From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.algebra.ssrnum.html | 4908 ----------------------------- 1 file changed, 4908 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.algebra.ssrnum.html (limited to 'docs/htmldoc/mathcomp.algebra.ssrnum.html') diff --git a/docs/htmldoc/mathcomp.algebra.ssrnum.html b/docs/htmldoc/mathcomp.algebra.ssrnum.html deleted file mode 100644 index 1f8132e..0000000 --- a/docs/htmldoc/mathcomp.algebra.ssrnum.html +++ /dev/null @@ -1,4908 +0,0 @@ - - - - - -mathcomp.algebra.ssrnum - - - - -
- - - -
- -

Library mathcomp.algebra.ssrnum

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-
- -
- -
- - This file defines some classes to manipulate number structures, i.e - structures with an order and a norm - -
- -

NumDomain (Integral domain with an order and a norm)

- - NumMixin == the mixin that provides an order and a norm over - a ring and their characteristic properties. - numDomainType == interface for a num integral domain. - NumDomainType T m - == packs the num mixin into a numberDomainType. The - carrier T must have a integral domain structure. - [numDomainType of T for S ] - == T-clone of the numDomainType structure S. - [numDomainType of T] - == clone of a canonical numDomainType structure on T. - -
- -

NumField (Field with an order and a norm)

- - numFieldType == interface for a num field. - [numFieldType of T] - == clone of a canonical numFieldType structure on T - -
- -

NumClosedField (Closed Field with an order and a norm)

- - numClosedFieldType - == interface for a num closed field. - [numClosedFieldType of T] - == clone of a canonical numClosedFieldType structure on T - -
- -

RealDomain (Num domain where all elements are positive or negative)

- - realDomainType == interface for a real integral domain. - RealDomainType T r - == packs the real axiom r into a realDomainType. The - carrier T must have a num domain structure. - [realDomainType of T for S ] - == T-clone of the realDomainType structure S. - [realDomainType of T] - == clone of a canonical realDomainType structure on T. - -
- -

RealField (Num Field where all elements are positive or negative)

- - realFieldType == interface for a real field. - [realFieldType of T] - == clone of a canonical realFieldType structure on T - -
- -

ArchiField (A Real Field with the archimedean axiom)

- - archiFieldType == interface for an archimedean field. - ArchiFieldType T r - == packs the archimeadean axiom r into an archiFieldType. - The carrier T must have a real field type structure. - [archiFieldType of T for S ] - == T-clone of the archiFieldType structure S. - [archiFieldType of T] - == clone of a canonical archiFieldType structure on T - -
- -

RealClosedField (Real Field with the real closed axiom)

- - rcfType == interface for a real closed field. - RcfType T r == packs the real closed axiom r into a - rcfType. The carrier T must have a real - field type structure. - [rcfType of T] == clone of a canonical realClosedFieldType structure on - T. - [rcfType of T for S ] - == T-clone of the realClosedFieldType structure S. - -
- -

NumClosedField (Partially ordered Closed Field with conjugation)

- - numClosedFieldType == interface for a closed field with conj. - NumClosedFieldType T r == packs the real closed axiom r into a - numClosedFieldType. The carrier T must have a closed - field type structure. - [numClosedFieldType of T] == clone of a canonical numClosedFieldType - structure on T - [numClosedFieldType of T for S ] - == T-clone of the realClosedFieldType structure S. - -
- - Over these structures, we have the following operations - `|x| == norm of x. - x <= y <=> x is less than or equal to y (:= '|y - x| == y - x). - x < y <=> x is less than y (:= (x <= y) && (x != y)). - x <= y ?= iff C <-> x is less than y, or equal iff C is true. - Num.sg x == sign of x: equal to 0 iff x = 0, to 1 iff x > 0, and - to -1 in all other cases (including x < 0). - x \is a Num.pos <=> x is positive (:= x > 0). - x \is a Num.neg <=> x is negative (:= x < 0). - x \is a Num.nneg <=> x is positive or 0 (:= x >= 0). - x \is a Num.real <=> x is real (:= x >= 0 or x < 0). - Num.min x y == minimum of x y - Num.max x y == maximum of x y - Num.bound x == in archimedean fields, and upper bound for x, i.e., - and n such that `|x| < n%:R. - Num.sqrt x == in a real-closed field, a positive square root of x if - x >= 0, or 0 otherwise. - For numeric algebraically closed fields we provide the generic definitions - 'i == the imaginary number (:= sqrtC (-1)). - 'Re z == the real component of z. - 'Im z == the imaginary component of z. - z^* == the complex conjugate of z (:= conjC z). - sqrtC z == a nonnegative square root of z, i.e., 0 <= sqrt x if 0 <= x. - n.-root z == more generally, for n > 0, an nth root of z, chosen with a - minimal non-negative argument for n > 1 (i.e., with a - maximal real part subject to a nonnegative imaginary part). - Note that n.-root (-1) is a primitive 2nth root of unity, - an thus not equal to -1 for n odd > 1 (this will be shown in - file cyclotomic.v). - -
- - There are now three distinct uses of the symbols <, <=, > and >=: - 0-ary, unary (prefix) and binary (infix). - 0. <%R, <=%R, >%R, >=%R stand respectively for lt, le, gt and ge. - 1. (< x), (<= x), (> x), (>= x) stand respectively for - (gt x), (ge x), (lt x), (le x). - So (< x) is a predicate characterizing elements smaller than x. - 2. (x < y), (x <= y), ... mean what they are expected to. - These convention are compatible with haskell's, - where ((< y) x) = (x < y) = ((<) x y), - except that we write <%R instead of (<). - -
- -
    -
  • list of prefixes : - p : positive - n : negative - sp : strictly positive - sn : strictly negative - i : interior = in [0, 1] or ]0, 1[ - e : exterior = in [1, +oo[ or ]1; +oo[ - w : non strict (weak) monotony - -
  • -
- -
- - [arg minr(i < i0 | P) M] == a value i : T minimizing M : R, subject - to the condition P (i may appear in P and M), and - provided P holds for i0. - [arg maxr(i > i0 | P) M] == a value i maximizing M subject to P and - provided P holds for i0. - [arg minr(i < i0 in A) M] == an i \in A minimizing M if i0 \in A. - [arg maxr(i > i0 in A) M] == an i \in A maximizing M if i0 \in A. - [arg minr(i < i0) M] == an i : T minimizing M, given i0 : T. - [arg maxr(i > i0) M] == an i : T maximizing M, given i0 : T. -
-
- -
-Set Implicit Arguments.
- -
-Local Open Scope ring_scope.
-Import GRing.Theory.
- -
-Reserved Notation "<= y" (at level 35).
-Reserved Notation ">= y" (at level 35).
-Reserved Notation "< y" (at level 35).
-Reserved Notation "> y" (at level 35).
-Reserved Notation "<= y :> T" (at level 35, y at next level).
-Reserved Notation ">= y :> T" (at level 35, y at next level).
-Reserved Notation "< y :> T" (at level 35, y at next level).
-Reserved Notation "> y :> T" (at level 35, y at next level).
- -
-Module Num.
- -
-
- -
- Principal mixin; further classes add axioms rather than operations. -
-
-Record mixin_of (R : ringType) := Mixin {
-  norm_op : R R;
-  le_op : rel R;
-  lt_op : rel R;
-  _ : x y, le_op (norm_op (x + y)) (norm_op x + norm_op y);
-  _ : x y, lt_op 0 x lt_op 0 y lt_op 0 (x + y);
-  _ : x, norm_op x = 0 x = 0;
-  _ : x y, le_op 0 x le_op 0 y le_op x y || le_op y x;
-  _ : {morph norm_op : x y / x × y};
-  _ : x y, (le_op x y) = (norm_op (y - x) == y - x);
-  _ : x y, (lt_op x y) = (y != x) && (le_op x y)
-}.
- -
- -
-
- -
- Base interface. -
-
-Module NumDomain.
- -
-Section ClassDef.
- -
-Record class_of T := Class {
-  base : GRing.IntegralDomain.class_of T;
-  mixin : mixin_of (ring_for T base)
-}.
-Structure type := Pack {sort; _ : class_of sort}.
-Variables (T : Type) (cT : type).
-Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
-Let xT := let: Pack T _ := cT in T.
-Notation xclass := (class : class_of xT).
- -
-Definition clone c of phant_id class c := @Pack T c.
-Definition pack b0 (m0 : mixin_of (ring_for T b0)) :=
-  fun bT b & phant_id (GRing.IntegralDomain.class bT) b
-  fun m & phant_id m0 mPack (@Class T b m).
- -
-Definition eqType := @Equality.Pack cT xclass.
-Definition choiceType := @Choice.Pack cT xclass.
-Definition zmodType := @GRing.Zmodule.Pack cT xclass.
-Definition ringType := @GRing.Ring.Pack cT xclass.
-Definition comRingType := @GRing.ComRing.Pack cT xclass.
-Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
-Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
-Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
- -
-End ClassDef.
- -
-Module Exports.
-Coercion base : class_of >-> GRing.IntegralDomain.class_of.
-Coercion mixin : class_of >-> mixin_of.
-Coercion sort : type >-> Sortclass.
-Coercion eqType : type >-> Equality.type.
-Canonical eqType.
-Coercion choiceType : type >-> Choice.type.
-Canonical choiceType.
-Coercion zmodType : type >-> GRing.Zmodule.type.
-Canonical zmodType.
-Coercion ringType : type >-> GRing.Ring.type.
-Canonical ringType.
-Coercion comRingType : type >-> GRing.ComRing.type.
-Canonical comRingType.
-Coercion unitRingType : type >-> GRing.UnitRing.type.
-Canonical unitRingType.
-Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
-Canonical comUnitRingType.
-Coercion idomainType : type >-> GRing.IntegralDomain.type.
-Canonical idomainType.
-Notation numDomainType := type.
-Notation NumMixin := Mixin.
-Notation NumDomainType T m := (@pack T _ m _ _ id _ id).
-Notation "[ 'numDomainType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
-  (at level 0, format "[ 'numDomainType' 'of' T 'for' cT ]") : form_scope.
-Notation "[ 'numDomainType' 'of' T ]" := (@clone T _ _ id)
-  (at level 0, format "[ 'numDomainType' 'of' T ]") : form_scope.
-End Exports.
- -
-End NumDomain.
-Import NumDomain.Exports.
- -
-Module Import Def. Section Def.
-Import NumDomain.
-Context {R : type}.
-Implicit Types (x y : R) (C : bool).
- -
-Definition normr : R R := norm_op (class R).
-Definition ler : rel R := le_op (class R).
-Definition ltr : rel R := lt_op (class R).
- -
-Definition ger : simpl_rel R := [rel x y | y x].
-Definition gtr : simpl_rel R := [rel x y | y < x].
-Definition lerif x y C : Prop := ((x y) × ((x == y) = C))%type.
-Definition sgr x : R := if x == 0 then 0 else if x < 0 then -1 else 1.
-Definition minr x y : R := if x y then x else y.
-Definition maxr x y : R := if y x then x else y.
- -
-Definition Rpos : qualifier 0 R := [qualify x : R | 0 < x].
-Definition Rneg : qualifier 0 R := [qualify x : R | x < 0].
-Definition Rnneg : qualifier 0 R := [qualify x : R | 0 x].
-Definition Rreal : qualifier 0 R := [qualify x : R | (0 x) || (x 0)].
-End Def. End Def.
- -
-
- -
- Shorter qualified names, when Num.Def is not imported. -
-
-Notation norm := normr.
-Notation le := ler.
-Notation lt := ltr.
-Notation ge := ger.
-Notation gt := gtr.
-Notation sg := sgr.
-Notation max := maxr.
-Notation min := minr.
-Notation pos := Rpos.
-Notation neg := Rneg.
-Notation nneg := Rnneg.
-Notation real := Rreal.
- -
-Module Keys. Section Keys.
-Variable R : numDomainType.
-Fact Rpos_key : pred_key (@pos R).
-Definition Rpos_keyed := KeyedQualifier Rpos_key.
-Fact Rneg_key : pred_key (@real R).
-Definition Rneg_keyed := KeyedQualifier Rneg_key.
-Fact Rnneg_key : pred_key (@nneg R).
-Definition Rnneg_keyed := KeyedQualifier Rnneg_key.
-Fact Rreal_key : pred_key (@real R).
-Definition Rreal_keyed := KeyedQualifier Rreal_key.
-Definition ler_of_leif x y C (le_xy : @lerif R x y C) := le_xy.1 : le x y.
-End Keys. End Keys.
- -
-
- -
- (Exported) symbolic syntax. -
-
-Module Import Syntax.
-Import Def Keys.
- -
-Notation "`| x |" := (norm x) : ring_scope.
- -
-Notation "<%R" := lt : ring_scope.
-Notation ">%R" := gt : ring_scope.
-Notation "<=%R" := le : ring_scope.
-Notation ">=%R" := ge : ring_scope.
-Notation "<?=%R" := lerif : ring_scope.
- -
-Notation "< y" := (gt y) : ring_scope.
-Notation "< y :> T" := (< (y : T)) : ring_scope.
-Notation "> y" := (lt y) : ring_scope.
-Notation "> y :> T" := (> (y : T)) : ring_scope.
- -
-Notation "<= y" := (ge y) : ring_scope.
-Notation "<= y :> T" := ( (y : T)) : ring_scope.
-Notation ">= y" := (le y) : ring_scope.
-Notation ">= y :> T" := ( (y : T)) : ring_scope.
- -
-Notation "x < y" := (lt x y) : ring_scope.
-Notation "x < y :> T" := ((x : T) < (y : T)) : ring_scope.
-Notation "x > y" := (y < x) (only parsing) : ring_scope.
-Notation "x > y :> T" := ((x : T) > (y : T)) (only parsing) : ring_scope.
- -
-Notation "x <= y" := (le x y) : ring_scope.
-Notation "x <= y :> T" := ((x : T) (y : T)) : ring_scope.
-Notation "x >= y" := (y x) (only parsing) : ring_scope.
-Notation "x >= y :> T" := ((x : T) (y : T)) (only parsing) : ring_scope.
- -
-Notation "x <= y <= z" := ((x y) && (y z)) : ring_scope.
-Notation "x < y <= z" := ((x < y) && (y z)) : ring_scope.
-Notation "x <= y < z" := ((x y) && (y < z)) : ring_scope.
-Notation "x < y < z" := ((x < y) && (y < z)) : ring_scope.
- -
-Notation "x <= y ?= 'iff' C" := (lerif x y C) : ring_scope.
-Notation "x <= y ?= 'iff' C :> R" := ((x : R) (y : R) ?= iff C)
-  (only parsing) : ring_scope.
- -
-Coercion ler_of_leif : lerif >-> is_true.
- -
-Canonical Rpos_keyed.
-Canonical Rneg_keyed.
-Canonical Rnneg_keyed.
-Canonical Rreal_keyed.
- -
-End Syntax.
- -
-Section ExtensionAxioms.
- -
-Variable R : numDomainType.
- -
-Definition real_axiom : Prop := x : R, x \is real.
- -
-Definition archimedean_axiom : Prop := x : R, ub, `|x| < ub%:R.
- -
-Definition real_closed_axiom : Prop :=
-   (p : {poly R}) (a b : R),
-    a b p.[a] 0 p.[b] exists2 x, a x b & root p x.
- -
-End ExtensionAxioms.
- -
- -
-
- -
- The rest of the numbers interface hierarchy. -
-
-Module NumField.
- -
-Section ClassDef.
- -
-Record class_of R :=
-  Class { base : GRing.Field.class_of R; mixin : mixin_of (ring_for R base) }.
-Definition base2 R (c : class_of R) := NumDomain.Class (mixin c).
- -
-Structure type := Pack {sort; _ : class_of sort}.
-Variables (T : Type) (cT : type).
-Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
-Let xT := let: Pack T _ := cT in T.
-Notation xclass := (class : class_of xT).
- -
-Definition pack :=
-  fun bT b & phant_id (GRing.Field.class bT) (b : GRing.Field.class_of T) ⇒
-  fun mT m & phant_id (NumDomain.class mT) (@NumDomain.Class T b m) ⇒
-  Pack (@Class T b m).
- -
-Definition eqType := @Equality.Pack cT xclass.
-Definition choiceType := @Choice.Pack cT xclass.
-Definition zmodType := @GRing.Zmodule.Pack cT xclass.
-Definition ringType := @GRing.Ring.Pack cT xclass.
-Definition comRingType := @GRing.ComRing.Pack cT xclass.
-Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
-Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
-Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
-Definition numDomainType := @NumDomain.Pack cT xclass.
-Definition fieldType := @GRing.Field.Pack cT xclass.
-Definition join_numDomainType := @NumDomain.Pack fieldType xclass.
- -
-End ClassDef.
- -
-Module Exports.
-Coercion base : class_of >-> GRing.Field.class_of.
-Coercion base2 : class_of >-> NumDomain.class_of.
-Coercion sort : type >-> Sortclass.
-Coercion eqType : type >-> Equality.type.
-Canonical eqType.
-Coercion choiceType : type >-> Choice.type.
-Canonical choiceType.
-Coercion zmodType : type >-> GRing.Zmodule.type.
-Canonical zmodType.
-Coercion ringType : type >-> GRing.Ring.type.
-Canonical ringType.
-Coercion comRingType : type >-> GRing.ComRing.type.
-Canonical comRingType.
-Coercion unitRingType : type >-> GRing.UnitRing.type.
-Canonical unitRingType.
-Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
-Canonical comUnitRingType.
-Coercion idomainType : type >-> GRing.IntegralDomain.type.
-Canonical idomainType.
-Coercion numDomainType : type >-> NumDomain.type.
-Canonical numDomainType.
-Coercion fieldType : type >-> GRing.Field.type.
-Canonical fieldType.
-Canonical join_numDomainType.
-Notation numFieldType := type.
-Notation "[ 'numFieldType' 'of' T ]" := (@pack T _ _ id _ _ id)
-  (at level 0, format "[ 'numFieldType' 'of' T ]") : form_scope.
-End Exports.
- -
-End NumField.
-Import NumField.Exports.
- -
-Module ClosedField.
- -
-Section ClassDef.
- -
-Record imaginary_mixin_of (R : numDomainType) := ImaginaryMixin {
-  imaginary : R;
-  conj_op : {rmorphism R R};
-  _ : imaginary ^+ 2 = - 1;
-  _ : x, x × conj_op x = `|x| ^+ 2;
-}.
- -
-Record class_of R := Class {
-  base : GRing.ClosedField.class_of R;
-  mixin : mixin_of (ring_for R base);
-  conj_mixin : imaginary_mixin_of (num_for R (NumDomain.Class mixin))
-}.
-Definition base2 R (c : class_of R) := NumField.Class (mixin c).
- -
-Structure type := Pack {sort; _ : class_of sort}.
-Variables (T : Type) (cT : type).
-Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
-Let xT := let: Pack T _ := cT in T.
-Notation xclass := (class : class_of xT).
- -
-Definition pack :=
-  fun bT b & phant_id (GRing.ClosedField.class bT)
-                      (b : GRing.ClosedField.class_of T) ⇒
-  fun mT m & phant_id (NumField.class mT) (@NumField.Class T b m) ⇒
-  fun mcPack (@Class T b m mc).
-Definition clone := fun b & phant_id class (b : class_of T) ⇒ Pack b.
- -
-Definition eqType := @Equality.Pack cT xclass.
-Definition choiceType := @Choice.Pack cT xclass.
-Definition zmodType := @GRing.Zmodule.Pack cT xclass.
-Definition ringType := @GRing.Ring.Pack cT xclass.
-Definition comRingType := @GRing.ComRing.Pack cT xclass.
-Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
-Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
-Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
-Definition numDomainType := @NumDomain.Pack cT xclass.
-Definition fieldType := @GRing.Field.Pack cT xclass.
-Definition numFieldType := @NumField.Pack cT xclass.
-Definition decFieldType := @GRing.DecidableField.Pack cT xclass.
-Definition closedFieldType := @GRing.ClosedField.Pack cT xclass.
-Definition join_dec_numDomainType := @NumDomain.Pack decFieldType xclass.
-Definition join_dec_numFieldType := @NumField.Pack decFieldType xclass.
-Definition join_numDomainType := @NumDomain.Pack closedFieldType xclass.
-Definition join_numFieldType := @NumField.Pack closedFieldType xclass.
- -
-End ClassDef.
- -
-Module Exports.
-Coercion base : class_of >-> GRing.ClosedField.class_of.
-Coercion base2 : class_of >-> NumField.class_of.
-Coercion sort : type >-> Sortclass.
-Coercion eqType : type >-> Equality.type.
-Canonical eqType.
-Coercion choiceType : type >-> Choice.type.
-Canonical choiceType.
-Coercion zmodType : type >-> GRing.Zmodule.type.
-Canonical zmodType.
-Coercion ringType : type >-> GRing.Ring.type.
-Canonical ringType.
-Coercion comRingType : type >-> GRing.ComRing.type.
-Canonical comRingType.
-Coercion unitRingType : type >-> GRing.UnitRing.type.
-Canonical unitRingType.
-Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
-Canonical comUnitRingType.
-Coercion idomainType : type >-> GRing.IntegralDomain.type.
-Canonical idomainType.
-Coercion numDomainType : type >-> NumDomain.type.
-Canonical numDomainType.
-Coercion fieldType : type >-> GRing.Field.type.
-Canonical fieldType.
-Coercion decFieldType : type >-> GRing.DecidableField.type.
-Canonical decFieldType.
-Coercion numFieldType : type >-> NumField.type.
-Canonical numFieldType.
-Coercion closedFieldType : type >-> GRing.ClosedField.type.
-Canonical closedFieldType.
-Canonical join_dec_numDomainType.
-Canonical join_dec_numFieldType.
-Canonical join_numDomainType.
-Canonical join_numFieldType.
-Notation numClosedFieldType := type.
-Notation NumClosedFieldType T m := (@pack T _ _ id _ _ id m).
-Notation "[ 'numClosedFieldType' 'of' T 'for' cT ]" := (@clone T cT _ id)
-  (at level 0, format "[ 'numClosedFieldType' 'of' T 'for' cT ]") :
-                                                         form_scope.
-Notation "[ 'numClosedFieldType' 'of' T ]" := (@clone T _ _ id)
-  (at level 0, format "[ 'numClosedFieldType' 'of' T ]") : form_scope.
-End Exports.
- -
-End ClosedField.
-Import ClosedField.Exports.
- -
-Module RealDomain.
- -
-Section ClassDef.
- -
-Record class_of R :=
-  Class {base : NumDomain.class_of R; _ : @real_axiom (num_for R base)}.
- -
-Structure type := Pack {sort; _ : class_of sort}.
-Variables (T : Type) (cT : type).
-Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
-Let xT := let: Pack T _ := cT in T.
-Notation xclass := (class : class_of xT).
- -
-Definition clone c of phant_id class c := @Pack T c.
-Definition pack b0 (m0 : real_axiom (num_for T b0)) :=
-  fun bT b & phant_id (NumDomain.class bT) b
-  fun m & phant_id m0 mPack (@Class T b m).
- -
-Definition eqType := @Equality.Pack cT xclass.
-Definition choiceType := @Choice.Pack cT xclass.
-Definition zmodType := @GRing.Zmodule.Pack cT xclass.
-Definition ringType := @GRing.Ring.Pack cT xclass.
-Definition comRingType := @GRing.ComRing.Pack cT xclass.
-Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
-Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
-Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
-Definition numDomainType := @NumDomain.Pack cT xclass.
- -
-End ClassDef.
- -
-Module Exports.
-Coercion base : class_of >-> NumDomain.class_of.
-Coercion sort : type >-> Sortclass.
-Coercion eqType : type >-> Equality.type.
-Canonical eqType.
-Coercion choiceType : type >-> Choice.type.
-Canonical choiceType.
-Coercion zmodType : type >-> GRing.Zmodule.type.
-Canonical zmodType.
-Coercion ringType : type >-> GRing.Ring.type.
-Canonical ringType.
-Coercion comRingType : type >-> GRing.ComRing.type.
-Canonical comRingType.
-Coercion unitRingType : type >-> GRing.UnitRing.type.
-Canonical unitRingType.
-Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
-Canonical comUnitRingType.
-Coercion idomainType : type >-> GRing.IntegralDomain.type.
-Canonical idomainType.
-Coercion numDomainType : type >-> NumDomain.type.
-Canonical numDomainType.
-Notation realDomainType := type.
-Notation RealDomainType T m := (@pack T _ m _ _ id _ id).
-Notation "[ 'realDomainType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
-  (at level 0, format "[ 'realDomainType' 'of' T 'for' cT ]") : form_scope.
-Notation "[ 'realDomainType' 'of' T ]" := (@clone T _ _ id)
-  (at level 0, format "[ 'realDomainType' 'of' T ]") : form_scope.
-End Exports.
- -
-End RealDomain.
-Import RealDomain.Exports.
- -
-Module RealField.
- -
-Section ClassDef.
- -
-Record class_of R :=
-  Class { base : NumField.class_of R; mixin : real_axiom (num_for R base) }.
-Definition base2 R (c : class_of R) := RealDomain.Class (@mixin R c).
- -
-Structure type := Pack {sort; _ : class_of sort}.
-Variables (T : Type) (cT : type).
-Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
-Let xT := let: Pack T _ := cT in T.
-Notation xclass := (class : class_of xT).
- -
-Definition pack :=
-  fun bT b & phant_id (NumField.class bT) (b : NumField.class_of T) ⇒
-  fun mT m & phant_id (RealDomain.class mT) (@RealDomain.Class T b m) ⇒
-  Pack (@Class T b m).
- -
-Definition eqType := @Equality.Pack cT xclass.
-Definition choiceType := @Choice.Pack cT xclass.
-Definition zmodType := @GRing.Zmodule.Pack cT xclass.
-Definition ringType := @GRing.Ring.Pack cT xclass.
-Definition comRingType := @GRing.ComRing.Pack cT xclass.
-Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
-Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
-Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
-Definition numDomainType := @NumDomain.Pack cT xclass.
-Definition realDomainType := @RealDomain.Pack cT xclass.
-Definition fieldType := @GRing.Field.Pack cT xclass.
-Definition numFieldType := @NumField.Pack cT xclass.
-Definition join_fieldType := @GRing.Field.Pack realDomainType xclass.
-Definition join_numFieldType := @NumField.Pack realDomainType xclass.
- -
-End ClassDef.
- -
-Module Exports.
-Coercion base : class_of >-> NumField.class_of.
-Coercion base2 : class_of >-> RealDomain.class_of.
-Coercion sort : type >-> Sortclass.
-Coercion eqType : type >-> Equality.type.
-Canonical eqType.
-Coercion choiceType : type >-> Choice.type.
-Canonical choiceType.
-Coercion zmodType : type >-> GRing.Zmodule.type.
-Canonical zmodType.
-Coercion ringType : type >-> GRing.Ring.type.
-Canonical ringType.
-Coercion comRingType : type >-> GRing.ComRing.type.
-Canonical comRingType.
-Coercion unitRingType : type >-> GRing.UnitRing.type.
-Canonical unitRingType.
-Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
-Canonical comUnitRingType.
-Coercion idomainType : type >-> GRing.IntegralDomain.type.
-Canonical idomainType.
-Coercion numDomainType : type >-> NumDomain.type.
-Canonical numDomainType.
-Coercion realDomainType : type >-> RealDomain.type.
-Canonical realDomainType.
-Coercion fieldType : type >-> GRing.Field.type.
-Canonical fieldType.
-Coercion numFieldType : type >-> NumField.type.
-Canonical numFieldType.
-Canonical join_fieldType.
-Canonical join_numFieldType.
-Notation realFieldType := type.
-Notation "[ 'realFieldType' 'of' T ]" := (@pack T _ _ id _ _ id)
-  (at level 0, format "[ 'realFieldType' 'of' T ]") : form_scope.
-End Exports.
- -
-End RealField.
-Import RealField.Exports.
- -
-Module ArchimedeanField.
- -
-Section ClassDef.
- -
-Record class_of R :=
-  Class { base : RealField.class_of R; _ : archimedean_axiom (num_for R base) }.
- -
-Structure type := Pack {sort; _ : class_of sort}.
-Variables (T : Type) (cT : type).
-Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
-Let xT := let: Pack T _ := cT in T.
-Notation xclass := (class : class_of xT).
- -
-Definition clone c of phant_id class c := @Pack T c.
-Definition pack b0 (m0 : archimedean_axiom (num_for T b0)) :=
-  fun bT b & phant_id (RealField.class bT) b
-  fun m & phant_id m0 mPack (@Class T b m).
- -
-Definition eqType := @Equality.Pack cT xclass.
-Definition choiceType := @Choice.Pack cT xclass.
-Definition zmodType := @GRing.Zmodule.Pack cT xclass.
-Definition ringType := @GRing.Ring.Pack cT xclass.
-Definition comRingType := @GRing.ComRing.Pack cT xclass.
-Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
-Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
-Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
-Definition numDomainType := @NumDomain.Pack cT xclass.
-Definition realDomainType := @RealDomain.Pack cT xclass.
-Definition fieldType := @GRing.Field.Pack cT xclass.
-Definition numFieldType := @NumField.Pack cT xclass.
-Definition realFieldType := @RealField.Pack cT xclass.
- -
-End ClassDef.
- -
-Module Exports.
-Coercion base : class_of >-> RealField.class_of.
-Coercion sort : type >-> Sortclass.
-Coercion eqType : type >-> Equality.type.
-Canonical eqType.
-Coercion choiceType : type >-> Choice.type.
-Canonical choiceType.
-Coercion zmodType : type >-> GRing.Zmodule.type.
-Canonical zmodType.
-Coercion ringType : type >-> GRing.Ring.type.
-Canonical ringType.
-Coercion comRingType : type >-> GRing.ComRing.type.
-Canonical comRingType.
-Coercion unitRingType : type >-> GRing.UnitRing.type.
-Canonical unitRingType.
-Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
-Canonical comUnitRingType.
-Coercion idomainType : type >-> GRing.IntegralDomain.type.
-Canonical idomainType.
-Coercion numDomainType : type >-> NumDomain.type.
-Canonical numDomainType.
-Coercion realDomainType : type >-> RealDomain.type.
-Canonical realDomainType.
-Coercion fieldType : type >-> GRing.Field.type.
-Canonical fieldType.
-Coercion numFieldType : type >-> NumField.type.
-Canonical numFieldType.
-Coercion realFieldType : type >-> RealField.type.
-Canonical realFieldType.
-Notation archiFieldType := type.
-Notation ArchiFieldType T m := (@pack T _ m _ _ id _ id).
-Notation "[ 'archiFieldType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
-  (at level 0, format "[ 'archiFieldType' 'of' T 'for' cT ]") : form_scope.
-Notation "[ 'archiFieldType' 'of' T ]" := (@clone T _ _ id)
-  (at level 0, format "[ 'archiFieldType' 'of' T ]") : form_scope.
-End Exports.
- -
-End ArchimedeanField.
-Import ArchimedeanField.Exports.
- -
-Module RealClosedField.
- -
-Section ClassDef.
- -
-Record class_of R :=
-  Class { base : RealField.class_of R; _ : real_closed_axiom (num_for R base) }.
- -
-Structure type := Pack {sort; _ : class_of sort}.
-Variables (T : Type) (cT : type).
-Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
-Let xT := let: Pack T _ := cT in T.
-Notation xclass := (class : class_of xT).
- -
-Definition clone c of phant_id class c := @Pack T c.
-Definition pack b0 (m0 : real_closed_axiom (num_for T b0)) :=
-  fun bT b & phant_id (RealField.class bT) b
-  fun m & phant_id m0 mPack (@Class T b m).
- -
-Definition eqType := @Equality.Pack cT xclass.
-Definition choiceType := @Choice.Pack cT xclass.
-Definition zmodType := @GRing.Zmodule.Pack cT xclass.
-Definition ringType := @GRing.Ring.Pack cT xclass.
-Definition comRingType := @GRing.ComRing.Pack cT xclass.
-Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
-Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
-Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
-Definition numDomainType := @NumDomain.Pack cT xclass.
-Definition realDomainType := @RealDomain.Pack cT xclass.
-Definition fieldType := @GRing.Field.Pack cT xclass.
-Definition numFieldType := @NumField.Pack cT xclass.
-Definition realFieldType := @RealField.Pack cT xclass.
- -
-End ClassDef.
- -
-Module Exports.
-Coercion base : class_of >-> RealField.class_of.
-Coercion sort : type >-> Sortclass.
-Coercion eqType : type >-> Equality.type.
-Canonical eqType.
-Coercion choiceType : type >-> Choice.type.
-Canonical choiceType.
-Coercion zmodType : type >-> GRing.Zmodule.type.
-Canonical zmodType.
-Coercion ringType : type >-> GRing.Ring.type.
-Canonical ringType.
-Coercion comRingType : type >-> GRing.ComRing.type.
-Canonical comRingType.
-Coercion unitRingType : type >-> GRing.UnitRing.type.
-Canonical unitRingType.
-Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
-Canonical comUnitRingType.
-Coercion idomainType : type >-> GRing.IntegralDomain.type.
-Canonical idomainType.
-Coercion numDomainType : type >-> NumDomain.type.
-Canonical numDomainType.
-Coercion realDomainType : type >-> RealDomain.type.
-Canonical realDomainType.
-Coercion fieldType : type >-> GRing.Field.type.
-Canonical fieldType.
-Coercion numFieldType : type >-> NumField.type.
-Canonical numFieldType.
-Coercion realFieldType : type >-> RealField.type.
-Canonical realFieldType.
-Notation rcfType := Num.RealClosedField.type.
-Notation RcfType T m := (@pack T _ m _ _ id _ id).
-Notation "[ 'rcfType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
-  (at level 0, format "[ 'rcfType' 'of' T 'for' cT ]") : form_scope.
-Notation "[ 'rcfType' 'of' T ]" := (@clone T _ _ id)
-  (at level 0, format "[ 'rcfType' 'of' T ]") : form_scope.
-End Exports.
- -
-End RealClosedField.
-Import RealClosedField.Exports.
- -
-
- -
- The elementary theory needed to support the definition of the derived - operations for the extensions described above. -
-
-Module Import Internals.
- -
-Section Domain.
-Variable R : numDomainType.
-Implicit Types x y : R.
- -
-
- -
- Lemmas from the signature -
-
- -
-Lemma normr0_eq0 x : `|x| = 0 x = 0.
- -
-Lemma ler_norm_add x y : `|x + y| `|x| + `|y|.
- -
-Lemma addr_gt0 x y : 0 < x 0 < y 0 < x + y.
- -
-Lemma ger_leVge x y : 0 x 0 y (x y) || (y x).
- -
-Lemma normrM : {morph norm : x y / x × y : R}.
- -
-Lemma ler_def x y : (x y) = (`|y - x| == y - x).
- -
-Lemma ltr_def x y : (x < y) = (y != x) && (x y).
- -
-
- -
- Basic consequences (just enough to get predicate closure properties). -
-
- -
-Lemma ger0_def x : (0 x) = (`|x| == x).
- -
-Lemma subr_ge0 x y : (0 x - y) = (y x).
- -
-Lemma oppr_ge0 x : (0 - x) = (x 0).
- -
-Lemma ler01 : 0 1 :> R.
- -
-Lemma ltr01 : 0 < 1 :> R.
- -
-Lemma ltrW x y : x < y x y.
- -
-Lemma lerr x : x x.
- -
-Lemma le0r x : (0 x) = (x == 0) || (0 < x).
- -
-Lemma addr_ge0 x y : 0 x 0 y 0 x + y.
- -
-Lemma pmulr_rgt0 x y : 0 < x (0 < x × y) = (0 < y).
- -
-
- -
- Closure properties of the real predicates. -
-
- -
-Lemma posrE x : (x \is pos) = (0 < x).
-Lemma nnegrE x : (x \is nneg) = (0 x).
-Lemma realE x : (x \is real) = (0 x) || (x 0).
- -
-Fact pos_divr_closed : divr_closed (@pos R).
-Canonical pos_mulrPred := MulrPred pos_divr_closed.
-Canonical pos_divrPred := DivrPred pos_divr_closed.
- -
-Fact nneg_divr_closed : divr_closed (@nneg R).
-Canonical nneg_mulrPred := MulrPred nneg_divr_closed.
-Canonical nneg_divrPred := DivrPred nneg_divr_closed.
- -
-Fact nneg_addr_closed : addr_closed (@nneg R).
- Canonical nneg_addrPred := AddrPred nneg_addr_closed.
-Canonical nneg_semiringPred := SemiringPred nneg_divr_closed.
- -
-Fact real_oppr_closed : oppr_closed (@real R).
- Canonical real_opprPred := OpprPred real_oppr_closed.
- -
-Fact real_addr_closed : addr_closed (@real R).
-Canonical real_addrPred := AddrPred real_addr_closed.
-Canonical real_zmodPred := ZmodPred real_oppr_closed.
- -
-Fact real_divr_closed : divr_closed (@real R).
-Canonical real_mulrPred := MulrPred real_divr_closed.
-Canonical real_smulrPred := SmulrPred real_divr_closed.
-Canonical real_divrPred := DivrPred real_divr_closed.
-Canonical real_sdivrPred := SdivrPred real_divr_closed.
-Canonical real_semiringPred := SemiringPred real_divr_closed.
-Canonical real_subringPred := SubringPred real_divr_closed.
-Canonical real_divringPred := DivringPred real_divr_closed.
- -
-End Domain.
- -
-Lemma num_real (R : realDomainType) (x : R) : x \is real.
- -
-Fact archi_bound_subproof (R : archiFieldType) : archimedean_axiom R.
- -
-Section RealClosed.
-Variable R : rcfType.
- -
-Lemma poly_ivt : real_closed_axiom R.
- -
-Fact sqrtr_subproof (x : R) :
-  exists2 y, 0 y & (if 0 x then y ^+ 2 == x else y == 0) : bool.
- -
-End RealClosed.
- -
-End Internals.
- -
-Module PredInstances.
- -
-Canonical pos_mulrPred.
-Canonical pos_divrPred.
- -
-Canonical nneg_addrPred.
-Canonical nneg_mulrPred.
-Canonical nneg_divrPred.
-Canonical nneg_semiringPred.
- -
-Canonical real_addrPred.
-Canonical real_opprPred.
-Canonical real_zmodPred.
-Canonical real_mulrPred.
-Canonical real_smulrPred.
-Canonical real_divrPred.
-Canonical real_sdivrPred.
-Canonical real_semiringPred.
-Canonical real_subringPred.
-Canonical real_divringPred.
- -
-End PredInstances.
- -
-Module Import ExtraDef.
- -
-Definition archi_bound {R} x := sval (sigW (@archi_bound_subproof R x)).
- -
-Definition sqrtr {R} x := s2val (sig2W (@sqrtr_subproof R x)).
- -
-End ExtraDef.
- -
-Notation bound := archi_bound.
-Notation sqrt := sqrtr.
- -
-Module Theory.
- -
-Section NumIntegralDomainTheory.
- -
-Variable R : numDomainType.
-Implicit Types x y z t : R.
- -
-
- -
- Lemmas from the signature (reexported from internals). -
-
- -
-Definition ler_norm_add x y : `|x + y| `|x| + `|y| := ler_norm_add x y.
-Definition addr_gt0 x y : 0 < x 0 < y 0 < x + y := @addr_gt0 R x y.
-Definition normr0_eq0 x : `|x| = 0 x = 0 := @normr0_eq0 R x.
-Definition ger_leVge x y : 0 x 0 y (x y) || (y x) :=
-  @ger_leVge R x y.
-Definition normrM : {morph normr : x y / x × y : R} := @normrM R.
-Definition ler_def x y : (x y) = (`|y - x| == y - x) := @ler_def R x y.
-Definition ltr_def x y : (x < y) = (y != x) && (x y) := @ltr_def R x y.
- -
-
- -
- Predicate and relation definitions. -
-
- -
-Lemma gerE x y : ge x y = (y x).
-Lemma gtrE x y : gt x y = (y < x).
-Lemma posrE x : (x \is pos) = (0 < x).
-Lemma negrE x : (x \is neg) = (x < 0).
-Lemma nnegrE x : (x \is nneg) = (0 x).
-Lemma realE x : (x \is real) = (0 x) || (x 0).
- -
-
- -
- General properties of <= and < -
-
- -
-Lemma lerr x : x x.
-Lemma ltrr x : x < x = false.
-Lemma ltrW x y : x < y x y.
-Hint Resolve lerr ltrr ltrW : core.
- -
-Lemma ltr_neqAle x y : (x < y) = (x != y) && (x y).
- -
-Lemma ler_eqVlt x y : (x y) = (x == y) || (x < y).
- -
-Lemma lt0r x : (0 < x) = (x != 0) && (0 x).
-Lemma le0r x : (0 x) = (x == 0) || (0 < x).
- -
-Lemma lt0r_neq0 (x : R) : 0 < x x != 0.
- -
-Lemma ltr0_neq0 (x : R) : x < 0 x != 0.
- -
-Lemma gtr_eqF x y : y < x x == y = false.
- -
-Lemma ltr_eqF x y : x < y x == y = false.
- -
-Lemma pmulr_rgt0 x y : 0 < x (0 < x × y) = (0 < y).
- -
-Lemma pmulr_rge0 x y : 0 < x (0 x × y) = (0 y).
- -
-
- -
- Integer comparisons and characteristic 0. -
-
-Lemma ler01 : 0 1 :> R.
-Lemma ltr01 : 0 < 1 :> R.
-Lemma ler0n n : 0 n%:R :> R.
-Hint Resolve ler01 ltr01 ler0n : core.
-Lemma ltr0Sn n : 0 < n.+1%:R :> R.
- Lemma ltr0n n : (0 < n%:R :> R) = (0 < n)%N.
- Hint Resolve ltr0Sn : core.
- -
-Lemma pnatr_eq0 n : (n%:R == 0 :> R) = (n == 0)%N.
- -
-Lemma char_num : [char R] =i pred0.
- -
-
- -
- Properties of the norm. -
-
- -
-Lemma ger0_def x : (0 x) = (`|x| == x).
-Lemma normr_idP {x} : reflect (`|x| = x) (0 x).
- Lemma ger0_norm x : 0 x `|x| = x.
- -
-Lemma normr0 : `|0| = 0 :> R.
-Lemma normr1 : `|1| = 1 :> R.
-Lemma normr_nat n : `|n%:R| = n%:R :> R.
-Lemma normrMn x n : `|x *+ n| = `|x| *+ n.
- -
-Lemma normr_prod I r (P : pred I) (F : I R) :
-  `|\prod_(i <- r | P i) F i| = \prod_(i <- r | P i) `|F i|.
- -
-Lemma normrX n x : `|x ^+ n| = `|x| ^+ n.
- -
-Lemma normr_unit : {homo (@norm R) : x / x \is a GRing.unit}.
- -
-Lemma normrV : {in GRing.unit, {morph (@normr R) : x / x ^-1}}.
- -
-Lemma normr0P {x} : reflect (`|x| = 0) (x == 0).
- -
-Definition normr_eq0 x := sameP (`|x| =P 0) normr0P.
- -
-Lemma normrN1 : `|-1| = 1 :> R.
- -
-Lemma normrN x : `|- x| = `|x|.
- -
-Lemma distrC x y : `|x - y| = `|y - x|.
- -
-Lemma ler0_def x : (x 0) = (`|x| == - x).
- -
-Lemma normr_id x : `|`|x| | = `|x|.
- -
-Lemma normr_ge0 x : 0 `|x|.
-Hint Resolve normr_ge0 : core.
- -
-Lemma ler0_norm x : x 0 `|x| = - x.
- -
-Definition gtr0_norm x (hx : 0 < x) := ger0_norm (ltrW hx).
-Definition ltr0_norm x (hx : x < 0) := ler0_norm (ltrW hx).
- -
-
- -
- Comparision to 0 of a difference -
-
- -
-Lemma subr_ge0 x y : (0 y - x) = (x y).
-Lemma subr_gt0 x y : (0 < y - x) = (x < y).
- Lemma subr_le0 x y : (y - x 0) = (y x).
- Lemma subr_lt0 x y : (y - x < 0) = (y < x).
- -
-Definition subr_lte0 := (subr_le0, subr_lt0).
-Definition subr_gte0 := (subr_ge0, subr_gt0).
-Definition subr_cp0 := (subr_lte0, subr_gte0).
- -
-
- -
- Ordered ring properties. -
-
- -
-Lemma ler_asym : antisymmetric (<=%R : rel R).
- -
-Lemma eqr_le x y : (x == y) = (x y x).
- -
-Lemma ltr_trans : transitive (@ltr R).
- -
-Lemma ler_lt_trans y x z : x y y < z x < z.
- -
-Lemma ltr_le_trans y x z : x < y y z x < z.
- -
-Lemma ler_trans : transitive (@ler R).
- -
-Definition lter01 := (ler01, ltr01).
-Definition lterr := (lerr, ltrr).
- -
-Lemma addr_ge0 x y : 0 x 0 y 0 x + y.
- -
-Lemma lerifP x y C : reflect (x y ?= iff C) (if C then x == y else x < y).
- -
-Lemma ltr_asym x y : x < y < x = false.
- -
-Lemma ler_anti : antisymmetric (@ler R).
- -
-Lemma ltr_le_asym x y : x < y x = false.
- -
-Lemma ler_lt_asym x y : x y < x = false.
- -
-Definition lter_anti := (=^~ eqr_le, ltr_asym, ltr_le_asym, ler_lt_asym).
- -
-Lemma ltr_geF x y : x < y (y x = false).
- -
-Lemma ler_gtF x y : x y (y < x = false).
- -
-Definition ltr_gtF x y hxy := ler_gtF (@ltrW x y hxy).
- -
-
- -
- Norm and order properties. -
-
- -
-Lemma normr_le0 x : (`|x| 0) = (x == 0).
- -
-Lemma normr_lt0 x : `|x| < 0 = false.
- -
-Lemma normr_gt0 x : (`|x| > 0) = (x != 0).
- -
-Definition normrE x := (normr_id, normr0, normr1, normrN1, normr_ge0, normr_eq0,
-  normr_lt0, normr_le0, normr_gt0, normrN).
- -
-End NumIntegralDomainTheory.
- -
-Hint Resolve @ler01 @ltr01 lerr ltrr ltrW ltr_eqF ltr0Sn ler0n normr_ge0 : core.
- -
-Section NumIntegralDomainMonotonyTheory.
- -
-Variables R R' : numDomainType.
-Implicit Types m n p : nat.
-Implicit Types x y z : R.
-Implicit Types u v w : R'.
- -
-
- -
- This listing of "Let"s factor out the required premices for the - subsequent lemmas, putting them in the context so that "done" solves the - goals quickly -
-
- -
-Let leqnn := leqnn.
-Let ltnE := ltn_neqAle.
-Let ltrE := @ltr_neqAle R.
-Let ltr'E := @ltr_neqAle R'.
-Let gtnE (m n : nat) : (m > n)%N = (m != n) && (m n)%N.
- Let gtrE (x y : R) : (x > y) = (x != y) && (x y).
- Let gtr'E (x y : R') : (x > y) = (x != y) && (x y).
- Let leq_anti : antisymmetric leq.
- Let geq_anti : antisymmetric geq.
- Let ler_antiR := @ler_anti R.
-Let ler_antiR' := @ler_anti R'.
-Let ger_antiR : antisymmetric (>=%R : rel R).
- Let ger_antiR' : antisymmetric (>=%R : rel R').
- Let leq_total := leq_total.
-Let geq_total : total geq.
- -
-Section AcrossTypes.
- -
-Variables (D D' : {pred R}) (f : R R').
- -
-Lemma ltrW_homo : {homo f : x y / x < y} {homo f : x y / x y}.
- -
-Lemma ltrW_nhomo : {homo f : x y /~ x < y} {homo f : x y /~ x y}.
- -
-Lemma inj_homo_ltr :
-  injective f {homo f : x y / x y} {homo f : x y / x < y}.
- -
-Lemma inj_nhomo_ltr :
-  injective f {homo f : x y /~ x y} {homo f : x y /~ x < y}.
- -
-Lemma incr_inj : {mono f : x y / x y} injective f.
- -
-Lemma decr_inj : {mono f : x y /~ x y} injective f.
- -
-Lemma lerW_mono : {mono f : x y / x y} {mono f : x y / x < y}.
- -
-Lemma lerW_nmono : {mono f : x y /~ x y} {mono f : x y /~ x < y}.
- -
-
- -
- Monotony in D D' -
-
-Lemma ltrW_homo_in :
-  {in D & D', {homo f : x y / x < y}} {in D & D', {homo f : x y / x y}}.
- -
-Lemma ltrW_nhomo_in :
-  {in D & D', {homo f : x y /~ x < y}} {in D & D', {homo f : x y /~ x y}}.
- -
-Lemma inj_homo_ltr_in :
-    {in D & D', injective f} {in D & D', {homo f : x y / x y}}
-  {in D & D', {homo f : x y / x < y}}.
- -
-Lemma inj_nhomo_ltr_in :
-    {in D & D', injective f} {in D & D', {homo f : x y /~ x y}}
-  {in D & D', {homo f : x y /~ x < y}}.
- -
-Lemma incr_inj_in : {in D &, {mono f : x y / x y}}
-   {in D &, injective f}.
- -
-Lemma decr_inj_in :
-  {in D &, {mono f : x y /~ x y}} {in D &, injective f}.
- -
-Lemma lerW_mono_in :
-  {in D &, {mono f : x y / x y}} {in D &, {mono f : x y / x < y}}.
- -
-Lemma lerW_nmono_in :
-  {in D &, {mono f : x y /~ x y}} {in D &, {mono f : x y /~ x < y}}.
- -
-End AcrossTypes.
- -
-Section NatToR.
- -
-Variables (D D' : {pred nat}) (f : nat R).
- -
-Lemma ltnrW_homo : {homo f : m n / (m < n)%N >-> m < n}
-  {homo f : m n / (m n)%N >-> m n}.
- -
-Lemma ltnrW_nhomo : {homo f : m n / (n < m)%N >-> m < n}
-  {homo f : m n / (n m)%N >-> m n}.
- -
-Lemma inj_homo_ltnr : injective f
-  {homo f : m n / (m n)%N >-> m n}
-  {homo f : m n / (m < n)%N >-> m < n}.
- -
-Lemma inj_nhomo_ltnr : injective f
-  {homo f : m n / (n m)%N >-> m n}
-  {homo f : m n / (n < m)%N >-> m < n}.
- -
-Lemma incnr_inj : {mono f : m n / (m n)%N >-> m n} injective f.
- -
-Lemma decnr_inj_inj : {mono f : m n / (n m)%N >-> m n} injective f.
- -
-Lemma lenrW_mono : {mono f : m n / (m n)%N >-> m n}
-  {mono f : m n / (m < n)%N >-> m < n}.
- -
-Lemma lenrW_nmono : {mono f : m n / (n m)%N >-> m n}
-  {mono f : m n / (n < m)%N >-> m < n}.
- -
-Lemma lenr_mono : {homo f : m n / (m < n)%N >-> m < n}
-   {mono f : m n / (m n)%N >-> m n}.
- -
-Lemma lenr_nmono : {homo f : m n / (n < m)%N >-> m < n}
-  {mono f : m n / (n m)%N >-> m n}.
- -
-Lemma ltnrW_homo_in : {in D & D', {homo f : m n / (m < n)%N >-> m < n}}
-  {in D & D', {homo f : m n / (m n)%N >-> m n}}.
- -
-Lemma ltnrW_nhomo_in : {in D & D', {homo f : m n / (n < m)%N >-> m < n}}
-  {in D & D', {homo f : m n / (n m)%N >-> m n}}.
- -
-Lemma inj_homo_ltnr_in : {in D & D', injective f}
-  {in D & D', {homo f : m n / (m n)%N >-> m n}}
-  {in D & D', {homo f : m n / (m < n)%N >-> m < n}}.
- -
-Lemma inj_nhomo_ltnr_in : {in D & D', injective f}
-  {in D & D', {homo f : m n / (n m)%N >-> m n}}
-  {in D & D', {homo f : m n / (n < m)%N >-> m < n}}.
- -
-Lemma incnr_inj_in : {in D &, {mono f : m n / (m n)%N >-> m n}}
-  {in D &, injective f}.
- -
-Lemma decnr_inj_inj_in : {in D &, {mono f : m n / (n m)%N >-> m n}}
-  {in D &, injective f}.
- -
-Lemma lenrW_mono_in : {in D &, {mono f : m n / (m n)%N >-> m n}}
-  {in D &, {mono f : m n / (m < n)%N >-> m < n}}.
- -
-Lemma lenrW_nmono_in : {in D &, {mono f : m n / (n m)%N >-> m n}}
-  {in D &, {mono f : m n / (n < m)%N >-> m < n}}.
- -
-Lemma lenr_mono_in : {in D &, {homo f : m n / (m < n)%N >-> m < n}}
-   {in D &, {mono f : m n / (m n)%N >-> m n}}.
- -
-Lemma lenr_nmono_in : {in D &, {homo f : m n / (n < m)%N >-> m < n}}
-  {in D &, {mono f : m n / (n m)%N >-> m n}}.
- -
-End NatToR.
- -
-Section RToNat.
- -
-Variables (D D' : {pred R}) (f : R nat).
- -
-Lemma ltrnW_homo : {homo f : m n / m < n >-> (m < n)%N}
-  {homo f : m n / m n >-> (m n)%N}.
- -
-Lemma ltrnW_nhomo : {homo f : m n / n < m >-> (m < n)%N}
-  {homo f : m n / n m >-> (m n)%N}.
- -
-Lemma inj_homo_ltrn : injective f
-  {homo f : m n / m n >-> (m n)%N}
-  {homo f : m n / m < n >-> (m < n)%N}.
- -
-Lemma inj_nhomo_ltrn : injective f
-  {homo f : m n / n m >-> (m n)%N}
-  {homo f : m n / n < m >-> (m < n)%N}.
- -
-Lemma incrn_inj : {mono f : m n / m n >-> (m n)%N} injective f.
- -
-Lemma decrn_inj : {mono f : m n / n m >-> (m n)%N} injective f.
- -
-Lemma lernW_mono : {mono f : m n / m n >-> (m n)%N}
-  {mono f : m n / m < n >-> (m < n)%N}.
- -
-Lemma lernW_nmono : {mono f : m n / n m >-> (m n)%N}
-  {mono f : m n / n < m >-> (m < n)%N}.
- -
-Lemma ltrnW_homo_in : {in D & D', {homo f : m n / m < n >-> (m < n)%N}}
-  {in D & D', {homo f : m n / m n >-> (m n)%N}}.
- -
-Lemma ltrnW_nhomo_in : {in D & D', {homo f : m n / n < m >-> (m < n)%N}}
-  {in D & D', {homo f : m n / n m >-> (m n)%N}}.
- -
-Lemma inj_homo_ltrn_in : {in D & D', injective f}
-  {in D & D', {homo f : m n / m n >-> (m n)%N}}
-  {in D & D', {homo f : m n / m < n >-> (m < n)%N}}.
- -
-Lemma inj_nhomo_ltrn_in : {in D & D', injective f}
-  {in D & D', {homo f : m n / n m >-> (m n)%N}}
-  {in D & D', {homo f : m n / n < m >-> (m < n)%N}}.
- -
-Lemma incrn_inj_in : {in D &, {mono f : m n / m n >-> (m n)%N}}
-  {in D &, injective f}.
- -
-Lemma decrn_inj_in : {in D &, {mono f : m n / n m >-> (m n)%N}}
-  {in D &, injective f}.
- -
-Lemma lernW_mono_in : {in D &, {mono f : m n / m n >-> (m n)%N}}
-  {in D &, {mono f : m n / m < n >-> (m < n)%N}}.
- -
-Lemma lernW_nmono_in : {in D &, {mono f : m n / n m >-> (m n)%N}}
-  {in D &, {mono f : m n / n < m >-> (m < n)%N}}.
- -
-End RToNat.
- -
-End NumIntegralDomainMonotonyTheory.
- -
-Section NumDomainOperationTheory.
- -
-Variable R : numDomainType.
-Implicit Types x y z t : R.
- -
-
- -
- Comparision and opposite. -
-
- -
-Lemma ler_opp2 : {mono -%R : x y /~ x y :> R}.
- Hint Resolve ler_opp2 : core.
-Lemma ltr_opp2 : {mono -%R : x y /~ x < y :> R}.
- Hint Resolve ltr_opp2 : core.
-Definition lter_opp2 := (ler_opp2, ltr_opp2).
- -
-Lemma ler_oppr x y : (x - y) = (y - x).
- -
-Lemma ltr_oppr x y : (x < - y) = (y < - x).
- -
-Definition lter_oppr := (ler_oppr, ltr_oppr).
- -
-Lemma ler_oppl x y : (- x y) = (- y x).
- -
-Lemma ltr_oppl x y : (- x < y) = (- y < x).
- -
-Definition lter_oppl := (ler_oppl, ltr_oppl).
- -
-Lemma oppr_ge0 x : (0 - x) = (x 0).
- -
-Lemma oppr_gt0 x : (0 < - x) = (x < 0).
- -
-Definition oppr_gte0 := (oppr_ge0, oppr_gt0).
- -
-Lemma oppr_le0 x : (- x 0) = (0 x).
- -
-Lemma oppr_lt0 x : (- x < 0) = (0 < x).
- -
-Definition oppr_lte0 := (oppr_le0, oppr_lt0).
-Definition oppr_cp0 := (oppr_gte0, oppr_lte0).
-Definition lter_oppE := (oppr_cp0, lter_opp2).
- -
-Lemma ge0_cp x : 0 x (- x 0) × (- x x).
- -
-Lemma gt0_cp x : 0 < x
-  (0 x) × (- x 0) × (- x x) × (- x < 0) × (- x < x).
- -
-Lemma le0_cp x : x 0 (0 - x) × (x - x).
- -
-Lemma lt0_cp x :
-  x < 0 (x 0) × (0 - x) × (x - x) × (0 < - x) × (x < - x).
- -
-
- -
- Properties of the real subset. -
-
- -
-Lemma ger0_real x : 0 x x \is real.
- -
-Lemma ler0_real x : x 0 x \is real.
- -
-Lemma gtr0_real x : 0 < x x \is real.
- -
-Lemma ltr0_real x : x < 0 x \is real.
- -
-Lemma real0 : 0 \is @real R.
-Hint Resolve real0 : core.
- -
-Lemma real1 : 1 \is @real R.
-Hint Resolve real1 : core.
- -
-Lemma realn n : n%:R \is @real R.
- -
-Lemma ler_leVge x y : x 0 y 0 (x y) || (y x).
- -
-Lemma real_leVge x y : x \is real y \is real (x y) || (y x).
- -
-Lemma realB : {in real &, x y, x - y \is real}.
- -
-Lemma realN : {mono (@GRing.opp R) : x / x \is real}.
- -
-
- -
- :TODO: add a rpredBC in ssralg -
-
-Lemma realBC x y : (x - y \is real) = (y - x \is real).
- -
-Lemma realD : {in real &, x y, x + y \is real}.
- -
-
- -
- dichotomy and trichotomy -
-
- -
-Variant ler_xor_gt (x y : R) : R R bool bool Set :=
-  | LerNotGt of x y : ler_xor_gt x y (y - x) (y - x) true false
-  | GtrNotLe of y < x : ler_xor_gt x y (x - y) (x - y) false true.
- -
-Variant ltr_xor_ge (x y : R) : R R bool bool Set :=
-  | LtrNotGe of x < y : ltr_xor_ge x y (y - x) (y - x) false true
-  | GerNotLt of y x : ltr_xor_ge x y (x - y) (x - y) true false.
- -
-Variant comparer x y : R R
-  bool bool bool bool bool bool Set :=
-  | ComparerLt of x < y : comparer x y (y - x) (y - x)
-    false false true false true false
-  | ComparerGt of x > y : comparer x y (x - y) (x - y)
-    false false false true false true
-  | ComparerEq of x = y : comparer x y 0 0
-    true true true true false false.
- -
-Lemma real_lerP x y :
-    x \is real y \is real
-  ler_xor_gt x y `|x - y| `|y - x| (x y) (y < x).
- -
-Lemma real_ltrP x y :
-    x \is real y \is real
-  ltr_xor_ge x y `|x - y| `|y - x| (y x) (x < y).
- -
-Lemma real_ltrNge : {in real &, x y, (x < y) = ~~ (y x)}.
- -
-Lemma real_lerNgt : {in real &, x y, (x y) = ~~ (y < x)}.
- -
-Lemma real_ltrgtP x y :
-    x \is real y \is real
-  comparer x y `|x - y| `|y - x|
-                (y == x) (x == y) (x y) (y x) (x < y) (x > y).
- -
-Variant ger0_xor_lt0 (x : R) : R bool bool Set :=
-  | Ger0NotLt0 of 0 x : ger0_xor_lt0 x x false true
-  | Ltr0NotGe0 of x < 0 : ger0_xor_lt0 x (- x) true false.
- -
-Variant ler0_xor_gt0 (x : R) : R bool bool Set :=
-  | Ler0NotLe0 of x 0 : ler0_xor_gt0 x (- x) false true
-  | Gtr0NotGt0 of 0 < x : ler0_xor_gt0 x x true false.
- -
-Variant comparer0 x :
-               R bool bool bool bool bool bool Set :=
-  | ComparerGt0 of 0 < x : comparer0 x x false false false true false true
-  | ComparerLt0 of x < 0 : comparer0 x (- x) false false true false true false
-  | ComparerEq0 of x = 0 : comparer0 x 0 true true true true false false.
- -
-Lemma real_ger0P x : x \is real ger0_xor_lt0 x `|x| (x < 0) (0 x).
- -
-Lemma real_ler0P x : x \is real ler0_xor_gt0 x `|x| (0 < x) (x 0).
- -
-Lemma real_ltrgt0P x :
-     x \is real
-  comparer0 x `|x| (0 == x) (x == 0) (x 0) (0 x) (x < 0) (x > 0).
- -
-Lemma real_neqr_lt : {in real &, x y, (x != y) = (x < y) || (y < x)}.
- -
-Lemma ler_sub_real x y : x y y - x \is real.
- -
-Lemma ger_sub_real x y : x y x - y \is real.
- -
-Lemma ler_real y x : x y (x \is real) = (y \is real).
- -
-Lemma ger_real x y : y x (x \is real) = (y \is real).
- -
-Lemma ger1_real x : 1 x x \is real.
-Lemma ler1_real x : x 1 x \is real.
- -
-Lemma Nreal_leF x y : y \is real x \notin real (x y) = false.
- -
-Lemma Nreal_geF x y : y \is real x \notin real (y x) = false.
- -
-Lemma Nreal_ltF x y : y \is real x \notin real (x < y) = false.
- -
-Lemma Nreal_gtF x y : y \is real x \notin real (y < x) = false.
- -
-
- -
- real wlog -
-
- -
-Lemma real_wlog_ler P :
-    ( a b, P b a P a b) ( a b, a b P a b)
-   a b : R, a \is real b \is real P a b.
- -
-Lemma real_wlog_ltr P :
-    ( a, P a a) ( a b, (P b a P a b))
-    ( a b, a < b P a b)
-   a b : R, a \is real b \is real P a b.
- -
-
- -
- Monotony of addition -
-
-Lemma ler_add2l x : {mono +%R x : y z / y z}.
- -
-Lemma ler_add2r x : {mono +%R^~ x : y z / y z}.
- -
-Lemma ltr_add2l x : {mono +%R x : y z / y < z}.
- -
-Lemma ltr_add2r x : {mono +%R^~ x : y z / y < z}.
- -
-Definition ler_add2 := (ler_add2l, ler_add2r).
-Definition ltr_add2 := (ltr_add2l, ltr_add2r).
-Definition lter_add2 := (ler_add2, ltr_add2).
- -
-
- -
- Addition, subtraction and transitivity -
-
-Lemma ler_add x y z t : x y z t x + z y + t.
- -
-Lemma ler_lt_add x y z t : x y z < t x + z < y + t.
- -
-Lemma ltr_le_add x y z t : x < y z t x + z < y + t.
- -
-Lemma ltr_add x y z t : x < y z < t x + z < y + t.
- -
-Lemma ler_sub x y z t : x y t z x - z y - t.
- -
-Lemma ler_lt_sub x y z t : x y t < z x - z < y - t.
- -
-Lemma ltr_le_sub x y z t : x < y t z x - z < y - t.
- -
-Lemma ltr_sub x y z t : x < y t < z x - z < y - t.
- -
-Lemma ler_subl_addr x y z : (x - y z) = (x z + y).
- -
-Lemma ltr_subl_addr x y z : (x - y < z) = (x < z + y).
- -
-Lemma ler_subr_addr x y z : (x y - z) = (x + z y).
- -
-Lemma ltr_subr_addr x y z : (x < y - z) = (x + z < y).
- -
-Definition ler_sub_addr := (ler_subl_addr, ler_subr_addr).
-Definition ltr_sub_addr := (ltr_subl_addr, ltr_subr_addr).
-Definition lter_sub_addr := (ler_sub_addr, ltr_sub_addr).
- -
-Lemma ler_subl_addl x y z : (x - y z) = (x y + z).
- -
-Lemma ltr_subl_addl x y z : (x - y < z) = (x < y + z).
- -
-Lemma ler_subr_addl x y z : (x y - z) = (z + x y).
- -
-Lemma ltr_subr_addl x y z : (x < y - z) = (z + x < y).
- -
-Definition ler_sub_addl := (ler_subl_addl, ler_subr_addl).
-Definition ltr_sub_addl := (ltr_subl_addl, ltr_subr_addl).
-Definition lter_sub_addl := (ler_sub_addl, ltr_sub_addl).
- -
-Lemma ler_addl x y : (x x + y) = (0 y).
- -
-Lemma ltr_addl x y : (x < x + y) = (0 < y).
- -
-Lemma ler_addr x y : (x y + x) = (0 y).
- -
-Lemma ltr_addr x y : (x < y + x) = (0 < y).
- -
-Lemma ger_addl x y : (x + y x) = (y 0).
- -
-Lemma gtr_addl x y : (x + y < x) = (y < 0).
- -
-Lemma ger_addr x y : (y + x x) = (y 0).
- -
-Lemma gtr_addr x y : (y + x < x) = (y < 0).
- -
-Definition cpr_add := (ler_addl, ler_addr, ger_addl, ger_addl,
-                       ltr_addl, ltr_addr, gtr_addl, gtr_addl).
- -
-
- -
- Addition with left member knwon to be positive/negative -
-
-Lemma ler_paddl y x z : 0 x y z y x + z.
- -
-Lemma ltr_paddl y x z : 0 x y < z y < x + z.
- -
-Lemma ltr_spaddl y x z : 0 < x y z y < x + z.
- -
-Lemma ltr_spsaddl y x z : 0 < x y < z y < x + z.
- -
-Lemma ler_naddl y x z : x 0 y z x + y z.
- -
-Lemma ltr_naddl y x z : x 0 y < z x + y < z.
- -
-Lemma ltr_snaddl y x z : x < 0 y z x + y < z.
- -
-Lemma ltr_snsaddl y x z : x < 0 y < z x + y < z.
- -
-
- -
- Addition with right member we know positive/negative -
-
-Lemma ler_paddr y x z : 0 x y z y z + x.
- -
-Lemma ltr_paddr y x z : 0 x y < z y < z + x.
- -
-Lemma ltr_spaddr y x z : 0 < x y z y < z + x.
- -
-Lemma ltr_spsaddr y x z : 0 < x y < z y < z + x.
- -
-Lemma ler_naddr y x z : x 0 y z y + x z.
- -
-Lemma ltr_naddr y x z : x 0 y < z y + x < z.
- -
-Lemma ltr_snaddr y x z : x < 0 y z y + x < z.
- -
-Lemma ltr_snsaddr y x z : x < 0 y < z y + x < z.
- -
-
- -
- x and y have the same sign and their sum is null -
-
-Lemma paddr_eq0 (x y : R) :
-  0 x 0 y (x + y == 0) = (x == 0) && (y == 0).
- -
-Lemma naddr_eq0 (x y : R) :
-  x 0 y 0 (x + y == 0) = (x == 0) && (y == 0).
- -
-Lemma addr_ss_eq0 (x y : R) :
-    (0 x) && (0 y) || (x 0) && (y 0)
-  (x + y == 0) = (x == 0) && (y == 0).
- -
-
- -
- big sum and ler -
-
-Lemma sumr_ge0 I (r : seq I) (P : pred I) (F : I R) :
-  ( i, P i (0 F i)) 0 \sum_(i <- r | P i) (F i).
- -
-Lemma ler_sum I (r : seq I) (P : pred I) (F G : I R) :
-    ( i, P i F i G i)
-  \sum_(i <- r | P i) F i \sum_(i <- r | P i) G i.
- -
-Lemma psumr_eq0 (I : eqType) (r : seq I) (P : pred I) (F : I R) :
-    ( i, P i 0 F i)
-  (\sum_(i <- r | P i) (F i) == 0) = (all (fun i(P i) ==> (F i == 0)) r).
- -
-
- -
- :TODO: Cyril : See which form to keep -
-
-Lemma psumr_eq0P (I : finType) (P : pred I) (F : I R) :
-     ( i, P i 0 F i) \sum_(i | P i) F i = 0
-  ( i, P i F i = 0).
- -
-
- -
- mulr and ler/ltr -
-
- -
-Lemma ler_pmul2l x : 0 < x {mono *%R x : x y / x y}.
- -
-Lemma ltr_pmul2l x : 0 < x {mono *%R x : x y / x < y}.
- -
-Definition lter_pmul2l := (ler_pmul2l, ltr_pmul2l).
- -
-Lemma ler_pmul2r x : 0 < x {mono *%R^~ x : x y / x y}.
- -
-Lemma ltr_pmul2r x : 0 < x {mono *%R^~ x : x y / x < y}.
- -
-Definition lter_pmul2r := (ler_pmul2r, ltr_pmul2r).
- -
-Lemma ler_nmul2l x : x < 0 {mono *%R x : x y /~ x y}.
- -
-Lemma ltr_nmul2l x : x < 0 {mono *%R x : x y /~ x < y}.
- -
-Definition lter_nmul2l := (ler_nmul2l, ltr_nmul2l).
- -
-Lemma ler_nmul2r x : x < 0 {mono *%R^~ x : x y /~ x y}.
- -
-Lemma ltr_nmul2r x : x < 0 {mono *%R^~ x : x y /~ x < y}.
- -
-Definition lter_nmul2r := (ler_nmul2r, ltr_nmul2r).
- -
-Lemma ler_wpmul2l x : 0 x {homo *%R x : y z / y z}.
- -
-Lemma ler_wpmul2r x : 0 x {homo *%R^~ x : y z / y z}.
- -
-Lemma ler_wnmul2l x : x 0 {homo *%R x : y z /~ y z}.
- -
-Lemma ler_wnmul2r x : x 0 {homo *%R^~ x : y z /~ y z}.
- -
-
- -
- Binary forms, for backchaining. -
-
- -
-Lemma ler_pmul x1 y1 x2 y2 :
-  0 x1 0 x2 x1 y1 x2 y2 x1 × x2 y1 × y2.
- -
-Lemma ltr_pmul x1 y1 x2 y2 :
-  0 x1 0 x2 x1 < y1 x2 < y2 x1 × x2 < y1 × y2.
- -
-
- -
- complement for x *+ n and <= or < -
-
- -
-Lemma ler_pmuln2r n : (0 < n)%N {mono (@GRing.natmul R)^~ n : x y / x y}.
- -
-Lemma ltr_pmuln2r n : (0 < n)%N {mono (@GRing.natmul R)^~ n : x y / x < y}.
- -
-Lemma pmulrnI n : (0 < n)%N injective ((@GRing.natmul R)^~ n).
- -
-Lemma eqr_pmuln2r n : (0 < n)%N {mono (@GRing.natmul R)^~ n : x y / x == y}.
- -
-Lemma pmulrn_lgt0 x n : (0 < n)%N (0 < x *+ n) = (0 < x).
- -
-Lemma pmulrn_llt0 x n : (0 < n)%N (x *+ n < 0) = (x < 0).
- -
-Lemma pmulrn_lge0 x n : (0 < n)%N (0 x *+ n) = (0 x).
- -
-Lemma pmulrn_lle0 x n : (0 < n)%N (x *+ n 0) = (x 0).
- -
-Lemma ltr_wmuln2r x y n : x < y (x *+ n < y *+ n) = (0 < n)%N.
- -
-Lemma ltr_wpmuln2r n : (0 < n)%N {homo (@GRing.natmul R)^~ n : x y / x < y}.
- -
-Lemma ler_wmuln2r n : {homo (@GRing.natmul R)^~ n : x y / x y}.
- -
-Lemma mulrn_wge0 x n : 0 x 0 x *+ n.
- -
-Lemma mulrn_wle0 x n : x 0 x *+ n 0.
- -
-Lemma ler_muln2r n x y : (x *+ n y *+ n) = ((n == 0%N) || (x y)).
- -
-Lemma ltr_muln2r n x y : (x *+ n < y *+ n) = ((0 < n)%N && (x < y)).
- -
-Lemma eqr_muln2r n x y : (x *+ n == y *+ n) = (n == 0)%N || (x == y).
- -
-
- -
- More characteristic zero properties. -
-
- -
-Lemma mulrn_eq0 x n : (x *+ n == 0) = ((n == 0)%N || (x == 0)).
- -
-Lemma mulrIn x : x != 0 injective (GRing.natmul x).
- -
-Lemma ler_wpmuln2l x :
-  0 x {homo (@GRing.natmul R x) : m n / (m n)%N >-> m n}.
- -
-Lemma ler_wnmuln2l x :
-  x 0 {homo (@GRing.natmul R x) : m n / (n m)%N >-> m n}.
- -
-Lemma mulrn_wgt0 x n : 0 < x 0 < x *+ n = (0 < n)%N.
- -
-Lemma mulrn_wlt0 x n : x < 0 x *+ n < 0 = (0 < n)%N.
- -
-Lemma ler_pmuln2l x :
-  0 < x {mono (@GRing.natmul R x) : m n / (m n)%N >-> m n}.
- -
-Lemma ltr_pmuln2l x :
-  0 < x {mono (@GRing.natmul R x) : m n / (m < n)%N >-> m < n}.
- -
-Lemma ler_nmuln2l x :
-  x < 0 {mono (@GRing.natmul R x) : m n / (n m)%N >-> m n}.
- -
-Lemma ltr_nmuln2l x :
-  x < 0 {mono (@GRing.natmul R x) : m n / (n < m)%N >-> m < n}.
- -
-Lemma ler_nat m n : (m%:R n%:R :> R) = (m n)%N.
- -
-Lemma ltr_nat m n : (m%:R < n%:R :> R) = (m < n)%N.
- -
-Lemma eqr_nat m n : (m%:R == n%:R :> R) = (m == n)%N.
- -
-Lemma pnatr_eq1 n : (n%:R == 1 :> R) = (n == 1)%N.
- -
-Lemma lern0 n : (n%:R 0 :> R) = (n == 0%N).
- -
-Lemma ltrn0 n : (n%:R < 0 :> R) = false.
- -
-Lemma ler1n n : 1 n%:R :> R = (1 n)%N.
-Lemma ltr1n n : 1 < n%:R :> R = (1 < n)%N.
-Lemma lern1 n : n%:R 1 :> R = (n 1)%N.
-Lemma ltrn1 n : n%:R < 1 :> R = (n < 1)%N.
- -
-Lemma ltrN10 : -1 < 0 :> R.
-Lemma lerN10 : -1 0 :> R.
-Lemma ltr10 : 1 < 0 :> R = false.
-Lemma ler10 : 1 0 :> R = false.
-Lemma ltr0N1 : 0 < -1 :> R = false.
-Lemma ler0N1 : 0 -1 :> R = false.
- -
-Lemma pmulrn_rgt0 x n : 0 < x 0 < x *+ n = (0 < n)%N.
- -
-Lemma pmulrn_rlt0 x n : 0 < x x *+ n < 0 = false.
- -
-Lemma pmulrn_rge0 x n : 0 < x 0 x *+ n.
- -
-Lemma pmulrn_rle0 x n : 0 < x x *+ n 0 = (n == 0)%N.
- -
-Lemma nmulrn_rgt0 x n : x < 0 0 < x *+ n = false.
- -
-Lemma nmulrn_rge0 x n : x < 0 0 x *+ n = (n == 0)%N.
- -
-Lemma nmulrn_rle0 x n : x < 0 x *+ n 0.
- -
-
- -
- (x * y) compared to 0 - Remark : pmulr_rgt0 and pmulr_rge0 are defined above -
- - x positive and y right -
-
-Lemma pmulr_rlt0 x y : 0 < x (x × y < 0) = (y < 0).
- -
-Lemma pmulr_rle0 x y : 0 < x (x × y 0) = (y 0).
- -
-
- -
- x positive and y left -
-
-Lemma pmulr_lgt0 x y : 0 < x (0 < y × x) = (0 < y).
- -
-Lemma pmulr_lge0 x y : 0 < x (0 y × x) = (0 y).
- -
-Lemma pmulr_llt0 x y : 0 < x (y × x < 0) = (y < 0).
- -
-Lemma pmulr_lle0 x y : 0 < x (y × x 0) = (y 0).
- -
-
- -
- x negative and y right -
-
-Lemma nmulr_rgt0 x y : x < 0 (0 < x × y) = (y < 0).
- -
-Lemma nmulr_rge0 x y : x < 0 (0 x × y) = (y 0).
- -
-Lemma nmulr_rlt0 x y : x < 0 (x × y < 0) = (0 < y).
- -
-Lemma nmulr_rle0 x y : x < 0 (x × y 0) = (0 y).
- -
-
- -
- x negative and y left -
-
-Lemma nmulr_lgt0 x y : x < 0 (0 < y × x) = (y < 0).
- -
-Lemma nmulr_lge0 x y : x < 0 (0 y × x) = (y 0).
- -
-Lemma nmulr_llt0 x y : x < 0 (y × x < 0) = (0 < y).
- -
-Lemma nmulr_lle0 x y : x < 0 (y × x 0) = (0 y).
- -
-
- -
- weak and symmetric lemmas -
-
-Lemma mulr_ge0 x y : 0 x 0 y 0 x × y.
- -
-Lemma mulr_le0 x y : x 0 y 0 0 x × y.
- -
-Lemma mulr_ge0_le0 x y : 0 x y 0 x × y 0.
- -
-Lemma mulr_le0_ge0 x y : x 0 0 y x × y 0.
- -
-
- -
- mulr_gt0 with only one case -
-
- -
-Lemma mulr_gt0 x y : 0 < x 0 < y 0 < x × y.
- -
-
- -
- Iterated products -
-
- -
-Lemma prodr_ge0 I r (P : pred I) (E : I R) :
-  ( i, P i 0 E i) 0 \prod_(i <- r | P i) E i.
- -
-Lemma prodr_gt0 I r (P : pred I) (E : I R) :
-  ( i, P i 0 < E i) 0 < \prod_(i <- r | P i) E i.
- -
-Lemma ler_prod I r (P : pred I) (E1 E2 : I R) :
-    ( i, P i 0 E1 i E2 i)
-  \prod_(i <- r | P i) E1 i \prod_(i <- r | P i) E2 i.
- -
-Lemma ltr_prod I r (P : pred I) (E1 E2 : I R) :
-    has P r ( i, P i 0 E1 i < E2 i)
-  \prod_(i <- r | P i) E1 i < \prod_(i <- r | P i) E2 i.
- -
-Lemma ltr_prod_nat (E1 E2 : nat R) (n m : nat) :
-   (m < n)%N ( i, (m i < n)%N 0 E1 i < E2 i)
-  \prod_(m i < n) E1 i < \prod_(m i < n) E2 i.
- -
-
- -
- real of mul -
-
- -
-Lemma realMr x y : x != 0 x \is real (x × y \is real) = (y \is real).
- -
-Lemma realrM x y : y != 0 y \is real (x × y \is real) = (x \is real).
- -
-Lemma realM : {in real &, x y, x × y \is real}.
- -
-Lemma realrMn x n : (n != 0)%N (x *+ n \is real) = (x \is real).
- -
-
- -
- ler/ltr and multiplication between a positive/negative -
-
- -
-Lemma ger_pmull x y : 0 < y (x × y y) = (x 1).
- -
-Lemma gtr_pmull x y : 0 < y (x × y < y) = (x < 1).
- -
-Lemma ger_pmulr x y : 0 < y (y × x y) = (x 1).
- -
-Lemma gtr_pmulr x y : 0 < y (y × x < y) = (x < 1).
- -
-Lemma ler_pmull x y : 0 < y (y x × y) = (1 x).
- -
-Lemma ltr_pmull x y : 0 < y (y < x × y) = (1 < x).
- -
-Lemma ler_pmulr x y : 0 < y (y y × x) = (1 x).
- -
-Lemma ltr_pmulr x y : 0 < y (y < y × x) = (1 < x).
- -
-Lemma ger_nmull x y : y < 0 (x × y y) = (1 x).
- -
-Lemma gtr_nmull x y : y < 0 (x × y < y) = (1 < x).
- -
-Lemma ger_nmulr x y : y < 0 (y × x y) = (1 x).
- -
-Lemma gtr_nmulr x y : y < 0 (y × x < y) = (1 < x).
- -
-Lemma ler_nmull x y : y < 0 (y x × y) = (x 1).
- -
-Lemma ltr_nmull x y : y < 0 (y < x × y) = (x < 1).
- -
-Lemma ler_nmulr x y : y < 0 (y y × x) = (x 1).
- -
-Lemma ltr_nmulr x y : y < 0 (y < y × x) = (x < 1).
- -
-
- -
- ler/ltr and multiplication between a positive/negative - and a exterior (1 <= _) or interior (0 <= _ <= 1) -
-
- -
-Lemma ler_pemull x y : 0 y 1 x y x × y.
- -
-Lemma ler_nemull x y : y 0 1 x x × y y.
- -
-Lemma ler_pemulr x y : 0 y 1 x y y × x.
- -
-Lemma ler_nemulr x y : y 0 1 x y × x y.
- -
-Lemma ler_pimull x y : 0 y x 1 x × y y.
- -
-Lemma ler_nimull x y : y 0 x 1 y x × y.
- -
-Lemma ler_pimulr x y : 0 y x 1 y × x y.
- -
-Lemma ler_nimulr x y : y 0 x 1 y y × x.
- -
-Lemma mulr_ile1 x y : 0 x 0 y x 1 y 1 x × y 1.
- -
-Lemma mulr_ilt1 x y : 0 x 0 y x < 1 y < 1 x × y < 1.
- -
-Definition mulr_ilte1 := (mulr_ile1, mulr_ilt1).
- -
-Lemma mulr_ege1 x y : 1 x 1 y 1 x × y.
- -
-Lemma mulr_egt1 x y : 1 < x 1 < y 1 < x × y.
-Definition mulr_egte1 := (mulr_ege1, mulr_egt1).
-Definition mulr_cp1 := (mulr_ilte1, mulr_egte1).
- -
-
- -
- ler and ^-1 -
-
- -
-Lemma invr_gt0 x : (0 < x^-1) = (0 < x).
- -
-Lemma invr_ge0 x : (0 x^-1) = (0 x).
- -
-Lemma invr_lt0 x : (x^-1 < 0) = (x < 0).
- -
-Lemma invr_le0 x : (x^-1 0) = (x 0).
- -
-Definition invr_gte0 := (invr_ge0, invr_gt0).
-Definition invr_lte0 := (invr_le0, invr_lt0).
- -
-Lemma divr_ge0 x y : 0 x 0 y 0 x / y.
- -
-Lemma divr_gt0 x y : 0 < x 0 < y 0 < x / y.
- -
-Lemma realV : {mono (@GRing.inv R) : x / x \is real}.
- -
-
- -
- ler and exprn -
-
-Lemma exprn_ge0 n x : 0 x 0 x ^+ n.
- -
-Lemma realX n : {in real, x, x ^+ n \is real}.
- -
-Lemma exprn_gt0 n x : 0 < x 0 < x ^+ n.
- -
-Definition exprn_gte0 := (exprn_ge0, exprn_gt0).
- -
-Lemma exprn_ile1 n x : 0 x x 1 x ^+ n 1.
- -
-Lemma exprn_ilt1 n x : 0 x x < 1 x ^+ n < 1 = (n != 0%N).
- -
-Definition exprn_ilte1 := (exprn_ile1, exprn_ilt1).
- -
-Lemma exprn_ege1 n x : 1 x 1 x ^+ n.
- -
-Lemma exprn_egt1 n x : 1 < x 1 < x ^+ n = (n != 0%N).
- -
-Definition exprn_egte1 := (exprn_ege1, exprn_egt1).
-Definition exprn_cp1 := (exprn_ilte1, exprn_egte1).
- -
-Lemma ler_iexpr x n : (0 < n)%N 0 x x 1 x ^+ n x.
- -
-Lemma ltr_iexpr x n : 0 < x x < 1 (x ^+ n < x) = (1 < n)%N.
- -
-Definition lter_iexpr := (ler_iexpr, ltr_iexpr).
- -
-Lemma ler_eexpr x n : (0 < n)%N 1 x x x ^+ n.
- -
-Lemma ltr_eexpr x n : 1 < x (x < x ^+ n) = (1 < n)%N.
- -
-Definition lter_eexpr := (ler_eexpr, ltr_eexpr).
-Definition lter_expr := (lter_iexpr, lter_eexpr).
- -
-Lemma ler_wiexpn2l x :
-  0 x x 1 {homo (GRing.exp x) : m n / (n m)%N >-> m n}.
- -
-Lemma ler_weexpn2l x :
-  1 x {homo (GRing.exp x) : m n / (m n)%N >-> m n}.
- -
-Lemma ieexprn_weq1 x n : 0 x (x ^+ n == 1) = ((n == 0%N) || (x == 1)).
- -
-Lemma ieexprIn x : 0 < x x != 1 injective (GRing.exp x).
- -
-Lemma ler_iexpn2l x :
-  0 < x x < 1 {mono (GRing.exp x) : m n / (n m)%N >-> m n}.
- -
-Lemma ltr_iexpn2l x :
-  0 < x x < 1 {mono (GRing.exp x) : m n / (n < m)%N >-> m < n}.
- -
-Definition lter_iexpn2l := (ler_iexpn2l, ltr_iexpn2l).
- -
-Lemma ler_eexpn2l x :
-  1 < x {mono (GRing.exp x) : m n / (m n)%N >-> m n}.
- -
-Lemma ltr_eexpn2l x :
-  1 < x {mono (GRing.exp x) : m n / (m < n)%N >-> m < n}.
- -
-Definition lter_eexpn2l := (ler_eexpn2l, ltr_eexpn2l).
- -
-Lemma ltr_expn2r n x y : 0 x x < y x ^+ n < y ^+ n = (n != 0%N).
- -
-Lemma ler_expn2r n : {in nneg & , {homo ((@GRing.exp R)^~ n) : x y / x y}}.
- -
-Definition lter_expn2r := (ler_expn2r, ltr_expn2r).
- -
-Lemma ltr_wpexpn2r n :
-  (0 < n)%N {in nneg & , {homo ((@GRing.exp R)^~ n) : x y / x < y}}.
- -
-Lemma ler_pexpn2r n :
-  (0 < n)%N {in nneg & , {mono ((@GRing.exp R)^~ n) : x y / x y}}.
- -
-Lemma ltr_pexpn2r n :
-  (0 < n)%N {in nneg & , {mono ((@GRing.exp R)^~ n) : x y / x < y}}.
- -
-Definition lter_pexpn2r := (ler_pexpn2r, ltr_pexpn2r).
- -
-Lemma pexpIrn n : (0 < n)%N {in nneg &, injective ((@GRing.exp R)^~ n)}.
- -
-
- -
- expr and ler/ltr -
-
-Lemma expr_le1 n x : (0 < n)%N 0 x (x ^+ n 1) = (x 1).
- -
-Lemma expr_lt1 n x : (0 < n)%N 0 x (x ^+ n < 1) = (x < 1).
- -
-Definition expr_lte1 := (expr_le1, expr_lt1).
- -
-Lemma expr_ge1 n x : (0 < n)%N 0 x (1 x ^+ n) = (1 x).
- -
-Lemma expr_gt1 n x : (0 < n)%N 0 x (1 < x ^+ n) = (1 < x).
- -
-Definition expr_gte1 := (expr_ge1, expr_gt1).
- -
-Lemma pexpr_eq1 x n : (0 < n)%N 0 x (x ^+ n == 1) = (x == 1).
- -
-Lemma pexprn_eq1 x n : 0 x (x ^+ n == 1) = (n == 0%N) || (x == 1).
- -
-Lemma eqr_expn2 n x y :
-  (0 < n)%N 0 x 0 y (x ^+ n == y ^+ n) = (x == y).
- -
-Lemma sqrp_eq1 x : 0 x (x ^+ 2 == 1) = (x == 1).
- -
-Lemma sqrn_eq1 x : x 0 (x ^+ 2 == 1) = (x == -1).
- -
-Lemma ler_sqr : {in nneg &, {mono (fun xx ^+ 2) : x y / x y}}.
- -
-Lemma ltr_sqr : {in nneg &, {mono (fun xx ^+ 2) : x y / x < y}}.
- -
-Lemma ler_pinv :
-  {in [pred x in GRing.unit | 0 < x] &, {mono (@GRing.inv R) : x y /~ x y}}.
- -
-Lemma ler_ninv :
-  {in [pred x in GRing.unit | x < 0] &, {mono (@GRing.inv R) : x y /~ x y}}.
- -
-Lemma ltr_pinv :
-  {in [pred x in GRing.unit | 0 < x] &, {mono (@GRing.inv R) : x y /~ x < y}}.
- -
-Lemma ltr_ninv :
-  {in [pred x in GRing.unit | x < 0] &, {mono (@GRing.inv R) : x y /~ x < y}}.
- -
-Lemma invr_gt1 x : x \is a GRing.unit 0 < x (1 < x^-1) = (x < 1).
- -
-Lemma invr_ge1 x : x \is a GRing.unit 0 < x (1 x^-1) = (x 1).
- -
-Definition invr_gte1 := (invr_ge1, invr_gt1).
- -
-Lemma invr_le1 x (ux : x \is a GRing.unit) (hx : 0 < x) :
-  (x^-1 1) = (1 x).
- -
-Lemma invr_lt1 x (ux : x \is a GRing.unit) (hx : 0 < x) : (x^-1 < 1) = (1 < x).
- -
-Definition invr_lte1 := (invr_le1, invr_lt1).
-Definition invr_cp1 := (invr_gte1, invr_lte1).
- -
-
- -
- norm -
-
- -
-Lemma real_ler_norm x : x \is real x `|x|.
- -
-
- -
- norm + add -
-
- -
-Lemma normr_real x : `|x| \is real.
-Hint Resolve normr_real : core.
- -
-Lemma ler_norm_sum I r (G : I R) (P : pred I):
-  `|\sum_(i <- r | P i) G i| \sum_(i <- r | P i) `|G i|.
- -
-Lemma ler_norm_sub x y : `|x - y| `|x| + `|y|.
- -
-Lemma ler_dist_add z x y : `|x - y| `|x - z| + `|z - y|.
- -
-Lemma ler_sub_norm_add x y : `|x| - `|y| `|x + y|.
- -
-Lemma ler_sub_dist x y : `|x| - `|y| `|x - y|.
- -
-Lemma ler_dist_dist x y : `|`|x| - `|y| | `|x - y|.
- -
-Lemma ler_dist_norm_add x y : `| `|x| - `|y| | `| x + y |.
- -
-Lemma real_ler_norml x y : x \is real (`|x| y) = (- y x y).
- -
-Lemma real_ler_normlP x y :
-  x \is real reflect ((-x y) × (x y)) (`|x| y).
- -
-Lemma real_eqr_norml x y :
-  x \is real (`|x| == y) = ((x == y) || (x == -y)) && (0 y).
- -
-Lemma real_eqr_norm2 x y :
-  x \is real y \is real (`|x| == `|y|) = (x == y) || (x == -y).
- -
-Lemma real_ltr_norml x y : x \is real (`|x| < y) = (- y < x < y).
- -
-Definition real_lter_norml := (real_ler_norml, real_ltr_norml).
- -
-Lemma real_ltr_normlP x y :
-  x \is real reflect ((-x < y) × (x < y)) (`|x| < y).
- -
-Lemma real_ler_normr x y : y \is real (x `|y|) = (x y) || (x - y).
- -
-Lemma real_ltr_normr x y : y \is real (x < `|y|) = (x < y) || (x < - y).
- -
-Definition real_lter_normr := (real_ler_normr, real_ltr_normr).
- -
-Lemma ler_nnorml x y : y < 0 `|x| y = false.
- -
-Lemma ltr_nnorml x y : y 0 `|x| < y = false.
- -
-Definition lter_nnormr := (ler_nnorml, ltr_nnorml).
- -
-Lemma real_ler_distl x y e :
-  x - y \is real (`|x - y| e) = (y - e x y + e).
- -
-Lemma real_ltr_distl x y e :
-  x - y \is real (`|x - y| < e) = (y - e < x < y + e).
- -
-Definition real_lter_distl := (real_ler_distl, real_ltr_distl).
- -
-(* GG: pointless duplication }-( *)
-Lemma eqr_norm_id x : (`|x| == x) = (0 x).
-Lemma eqr_normN x : (`|x| == - x) = (x 0).
-Definition eqr_norm_idVN := =^~ (ger0_def, ler0_def).
- -
-Lemma real_exprn_even_ge0 n x : x \is real ~~ odd n 0 x ^+ n.
- -
-Lemma real_exprn_even_gt0 n x :
-  x \is real ~~ odd n (0 < x ^+ n) = (n == 0)%N || (x != 0).
- -
-Lemma real_exprn_even_le0 n x :
-  x \is real ~~ odd n (x ^+ n 0) = (n != 0%N) && (x == 0).
- -
-Lemma real_exprn_even_lt0 n x :
-  x \is real ~~ odd n (x ^+ n < 0) = false.
- -
-Lemma real_exprn_odd_ge0 n x :
-  x \is real odd n (0 x ^+ n) = (0 x).
- -
-Lemma real_exprn_odd_gt0 n x : x \is real odd n (0 < x ^+ n) = (0 < x).
- -
-Lemma real_exprn_odd_le0 n x : x \is real odd n (x ^+ n 0) = (x 0).
- -
-Lemma real_exprn_odd_lt0 n x : x \is real odd n (x ^+ n < 0) = (x < 0).
- -
-
- -
- GG: Could this be a better definition of "real" ? -
-
-Lemma realEsqr x : (x \is real) = (0 x ^+ 2).
- -
-Lemma real_normK x : x \is real `|x| ^+ 2 = x ^+ 2.
- -
-
- -
- Binary sign ((-1) ^+ s). -
-
- -
-Lemma normr_sign s : `|(-1) ^+ s| = 1 :> R.
- -
-Lemma normrMsign s x : `|(-1) ^+ s × x| = `|x|.
- -
-Lemma signr_gt0 (b : bool) : (0 < (-1) ^+ b :> R) = ~~ b.
- -
-Lemma signr_lt0 (b : bool) : ((-1) ^+ b < 0 :> R) = b.
- -
-Lemma signr_ge0 (b : bool) : (0 (-1) ^+ b :> R) = ~~ b.
- -
-Lemma signr_le0 (b : bool) : ((-1) ^+ b 0 :> R) = b.
- -
-
- -
- This actually holds for char R != 2. -
-
-Lemma signr_inj : injective (fun b : bool(-1) ^+ b : R).
- -
-
- -
- Ternary sign (sg). -
-
- -
-Lemma sgr_def x : sg x = (-1) ^+ (x < 0)%R *+ (x != 0).
- -
-Lemma neqr0_sign x : x != 0 (-1) ^+ (x < 0)%R = sgr x.
- -
-Lemma gtr0_sg x : 0 < x sg x = 1.
- -
-Lemma ltr0_sg x : x < 0 sg x = -1.
- -
-Lemma sgr0 : sg 0 = 0 :> R.
-Lemma sgr1 : sg 1 = 1 :> R.
-Lemma sgrN1 : sg (-1) = -1 :> R.
-Definition sgrE := (sgr0, sgr1, sgrN1).
- -
-Lemma sqr_sg x : sg x ^+ 2 = (x != 0)%:R.
- -
-Lemma mulr_sg_eq1 x y : (sg x × y == 1) = (x != 0) && (sg x == y).
- -
-Lemma mulr_sg_eqN1 x y : (sg x × sg y == -1) = (x != 0) && (sg x == - sg y).
- -
-Lemma sgr_eq0 x : (sg x == 0) = (x == 0).
- -
-Lemma sgr_odd n x : x != 0 (sg x) ^+ n = (sg x) ^+ (odd n).
- -
-Lemma sgrMn x n : sg (x *+ n) = (n != 0%N)%:R × sg x.
- -
-Lemma sgr_nat n : sg n%:R = (n != 0%N)%:R :> R.
- -
-Lemma sgr_id x : sg (sg x) = sg x.
- -
-Lemma sgr_lt0 x : (sg x < 0) = (x < 0).
- -
-Lemma sgr_le0 x : (sgr x 0) = (x 0).
- -
-
- -
- sign and norm -
-
- -
-Lemma realEsign x : x \is real x = (-1) ^+ (x < 0)%R × `|x|.
- -
-Lemma realNEsign x : x \is real - x = (-1) ^+ (0 < x)%R × `|x|.
- -
-Lemma real_normrEsign (x : R) (xR : x \is real) : `|x| = (-1) ^+ (x < 0)%R × x.
- -
-
- -
- GG: pointless duplication... -
-
-Lemma real_mulr_sign_norm x : x \is real (-1) ^+ (x < 0)%R × `|x| = x.
- -
-Lemma real_mulr_Nsign_norm x : x \is real (-1) ^+ (0 < x)%R × `|x| = - x.
- -
-Lemma realEsg x : x \is real x = sgr x × `|x|.
- -
-Lemma normr_sg x : `|sg x| = (x != 0)%:R.
- -
-Lemma sgr_norm x : sg `|x| = (x != 0)%:R.
- -
-
- -
- lerif -
-
- -
-Lemma lerif_refl x C : reflect (x x ?= iff C) C.
- -
-Lemma lerif_trans x1 x2 x3 C12 C23 :
-  x1 x2 ?= iff C12 x2 x3 ?= iff C23 x1 x3 ?= iff C12 && C23.
- -
-Lemma lerif_le x y : x y x y ?= iff (x y).
- -
-Lemma lerif_eq x y : x y x y ?= iff (x == y).
- -
-Lemma ger_lerif x y C : x y ?= iff C (y x) = C.
- -
-Lemma ltr_lerif x y C : x y ?= iff C (x < y) = ~~ C.
- -
-Lemma lerif_nat m n C : (m%:R n%:R ?= iff C :> R) = (m n ?= iff C)%N.
- -
-Lemma mono_in_lerif (A : {pred R}) (f : R R) C :
-   {in A &, {mono f : x y / x y}}
-  {in A &, x y, (f x f y ?= iff C) = (x y ?= iff C)}.
- -
-Lemma mono_lerif (f : R R) C :
-    {mono f : x y / x y}
-   x y, (f x f y ?= iff C) = (x y ?= iff C).
- -
-Lemma nmono_in_lerif (A : {pred R}) (f : R R) C :
-    {in A &, {mono f : x y /~ x y}}
-  {in A &, x y, (f x f y ?= iff C) = (y x ?= iff C)}.
- -
-Lemma nmono_lerif (f : R R) C :
-    {mono f : x y /~ x y}
-   x y, (f x f y ?= iff C) = (y x ?= iff C).
- -
-Lemma lerif_subLR x y z C : (x - y z ?= iff C) = (x z + y ?= iff C).
- -
-Lemma lerif_subRL x y z C : (x y - z ?= iff C) = (x + z y ?= iff C).
- -
-Lemma lerif_add x1 y1 C1 x2 y2 C2 :
-    x1 y1 ?= iff C1 x2 y2 ?= iff C2
-  x1 + x2 y1 + y2 ?= iff C1 && C2.
- -
-Lemma lerif_sum (I : finType) (P C : pred I) (E1 E2 : I R) :
-    ( i, P i E1 i E2 i ?= iff C i)
-  \sum_(i | P i) E1 i \sum_(i | P i) E2 i ?= iff [ (i | P i), C i].
- -
-Lemma lerif_0_sum (I : finType) (P C : pred I) (E : I R) :
-    ( i, P i 0 E i ?= iff C i)
-  0 \sum_(i | P i) E i ?= iff [ (i | P i), C i].
- -
-Lemma real_lerif_norm x : x \is real x `|x| ?= iff (0 x).
- -
-Lemma lerif_pmul x1 x2 y1 y2 C1 C2 :
-    0 x1 0 x2 x1 y1 ?= iff C1 x2 y2 ?= iff C2
-  x1 × x2 y1 × y2 ?= iff (y1 × y2 == 0) || C1 && C2.
- -
-Lemma lerif_nmul x1 x2 y1 y2 C1 C2 :
-    y1 0 y2 0 x1 y1 ?= iff C1 x2 y2 ?= iff C2
-  y1 × y2 x1 × x2 ?= iff (x1 × x2 == 0) || C1 && C2.
- -
-Lemma lerif_pprod (I : finType) (P C : pred I) (E1 E2 : I R) :
-    ( i, P i 0 E1 i)
-    ( i, P i E1 i E2 i ?= iff C i)
-  let pi E := \prod_(i | P i) E i in
-  pi E1 pi E2 ?= iff (pi E2 == 0) || [ (i | P i), C i].
- -
-
- -
- Mean inequalities. -
-
- -
-Lemma real_lerif_mean_square_scaled x y :
-  x \is real y \is real x × y *+ 2 x ^+ 2 + y ^+ 2 ?= iff (x == y).
- -
-Lemma real_lerif_AGM2_scaled x y :
-  x \is real y \is real x × y *+ 4 (x + y) ^+ 2 ?= iff (x == y).
- -
-Lemma lerif_AGM_scaled (I : finType) (A : {pred I}) (E : I R) (n := #|A|) :
-    {in A, i, 0 E i *+ n}
-  \prod_(i in A) (E i *+ n) (\sum_(i in A) E i) ^+ n
-                            ?= iff [ i in A, j in A, E i == E j].
- -
-
- -
- Polynomial bound. -
-
- -
-Implicit Type p : {poly R}.
- -
-Lemma poly_disk_bound p b : {ub | x, `|x| b `|p.[x]| ub}.
- -
-End NumDomainOperationTheory.
- -
-Hint Resolve ler_opp2 ltr_opp2 real0 real1 normr_real : core.
- -
-Section NumDomainMonotonyTheoryForReals.
- -
-Variables (R R' : numDomainType) (D : pred R) (f : R R') (f' : R nat).
-Implicit Types (m n p : nat) (x y z : R) (u v w : R').
- -
-Lemma real_mono :
-  {homo f : x y / x < y} {in real &, {mono f : x y / x y}}.
- -
-Lemma real_nmono :
-  {homo f : x y /~ x < y} {in real &, {mono f : x y /~ x y}}.
- -
-Lemma real_mono_in :
-    {in D &, {homo f : x y / x < y}}
-  {in [pred x in D | x \is real] &, {mono f : x y / x y}}.
- -
-Lemma real_nmono_in :
-    {in D &, {homo f : x y /~ x < y}}
-  {in [pred x in D | x \is real] &, {mono f : x y /~ x y}}.
- -
-Lemma realn_mono : {homo f' : x y / x < y >-> (x < y)%N}
-  {in real &, {mono f' : x y / x y >-> (x y)%N}}.
- -
-Lemma realn_nmono : {homo f' : x y / y < x >-> (x < y)%N}
-  {in real &, {mono f' : x y / y x >-> (x y)%N}}.
- -
-Lemma realn_mono_in : {in D &, {homo f' : x y / x < y >-> (x < y)%N}}
-  {in [pred x in D | x \is real] &, {mono f' : x y / x y >-> (x y)%N}}.
- -
-Lemma realn_nmono_in : {in D &, {homo f' : x y / y < x >-> (x < y)%N}}
-  {in [pred x in D | x \is real] &, {mono f' : x y / y x >-> (x y)%N}}.
- -
-End NumDomainMonotonyTheoryForReals.
- -
-Section FinGroup.
- -
-Import GroupScope.
- -
-Variables (R : numDomainType) (gT : finGroupType).
-Implicit Types G : {group gT}.
- -
-Lemma natrG_gt0 G : #|G|%:R > 0 :> R.
- -
-Lemma natrG_neq0 G : #|G|%:R != 0 :> R.
- -
-Lemma natr_indexg_gt0 G B : #|G : B|%:R > 0 :> R.
- -
-Lemma natr_indexg_neq0 G B : #|G : B|%:R != 0 :> R.
- -
-End FinGroup.
- -
-Section NumFieldTheory.
- -
-Variable F : numFieldType.
-Implicit Types x y z t : F.
- -
-Lemma unitf_gt0 x : 0 < x x \is a GRing.unit.
- -
-Lemma unitf_lt0 x : x < 0 x \is a GRing.unit.
- -
-Lemma lef_pinv : {in pos &, {mono (@GRing.inv F) : x y /~ x y}}.
- -
-Lemma lef_ninv : {in neg &, {mono (@GRing.inv F) : x y /~ x y}}.
- -
-Lemma ltf_pinv : {in pos &, {mono (@GRing.inv F) : x y /~ x < y}}.
- -
-Lemma ltf_ninv: {in neg &, {mono (@GRing.inv F) : x y /~ x < y}}.
- -
-Definition ltef_pinv := (lef_pinv, ltf_pinv).
-Definition ltef_ninv := (lef_ninv, ltf_ninv).
- -
-Lemma invf_gt1 x : 0 < x (1 < x^-1) = (x < 1).
- -
-Lemma invf_ge1 x : 0 < x (1 x^-1) = (x 1).
- -
-Definition invf_gte1 := (invf_ge1, invf_gt1).
- -
-Lemma invf_le1 x : 0 < x (x^-1 1) = (1 x).
- -
-Lemma invf_lt1 x : 0 < x (x^-1 < 1) = (1 < x).
- -
-Definition invf_lte1 := (invf_le1, invf_lt1).
-Definition invf_cp1 := (invf_gte1, invf_lte1).
- -
-
- -
- These lemma are all combinations of mono(LR|RL) with ler [pn]mul2[rl]. -
-
-Lemma ler_pdivl_mulr z x y : 0 < z (x y / z) = (x × z y).
- -
-Lemma ltr_pdivl_mulr z x y : 0 < z (x < y / z) = (x × z < y).
- -
-Definition lter_pdivl_mulr := (ler_pdivl_mulr, ltr_pdivl_mulr).
- -
-Lemma ler_pdivr_mulr z x y : 0 < z (y / z x) = (y x × z).
- -
-Lemma ltr_pdivr_mulr z x y : 0 < z (y / z < x) = (y < x × z).
- -
-Definition lter_pdivr_mulr := (ler_pdivr_mulr, ltr_pdivr_mulr).
- -
-Lemma ler_pdivl_mull z x y : 0 < z (x z^-1 × y) = (z × x y).
- -
-Lemma ltr_pdivl_mull z x y : 0 < z (x < z^-1 × y) = (z × x < y).
- -
-Definition lter_pdivl_mull := (ler_pdivl_mull, ltr_pdivl_mull).
- -
-Lemma ler_pdivr_mull z x y : 0 < z (z^-1 × y x) = (y z × x).
- -
-Lemma ltr_pdivr_mull z x y : 0 < z (z^-1 × y < x) = (y < z × x).
- -
-Definition lter_pdivr_mull := (ler_pdivr_mull, ltr_pdivr_mull).
- -
-Lemma ler_ndivl_mulr z x y : z < 0 (x y / z) = (y x × z).
- -
-Lemma ltr_ndivl_mulr z x y : z < 0 (x < y / z) = (y < x × z).
- -
-Definition lter_ndivl_mulr := (ler_ndivl_mulr, ltr_ndivl_mulr).
- -
-Lemma ler_ndivr_mulr z x y : z < 0 (y / z x) = (x × z y).
- -
-Lemma ltr_ndivr_mulr z x y : z < 0 (y / z < x) = (x × z < y).
- -
-Definition lter_ndivr_mulr := (ler_ndivr_mulr, ltr_ndivr_mulr).
- -
-Lemma ler_ndivl_mull z x y : z < 0 (x z^-1 × y) = (y z × x).
- -
-Lemma ltr_ndivl_mull z x y : z < 0 (x < z^-1 × y) = (y < z × x).
- -
-Definition lter_ndivl_mull := (ler_ndivl_mull, ltr_ndivl_mull).
- -
-Lemma ler_ndivr_mull z x y : z < 0 (z^-1 × y x) = (z × x y).
- -
-Lemma ltr_ndivr_mull z x y : z < 0 (z^-1 × y < x) = (z × x < y).
- -
-Definition lter_ndivr_mull := (ler_ndivr_mull, ltr_ndivr_mull).
- -
-Lemma natf_div m d : (d %| m)%N (m %/ d)%:R = m%:R / d%:R :> F.
- -
-Lemma normfV : {morph (@norm F) : x / x ^-1}.
- -
-Lemma normf_div : {morph (@norm F) : x y / x / y}.
- -
-Lemma invr_sg x : (sg x)^-1 = sgr x.
- -
-Lemma sgrV x : sgr x^-1 = sgr x.
- -
-
- -
- Interval midpoint. -
-
- -
- -
-Lemma midf_le x y : x y (x mid x y) × (mid x y y).
- -
-Lemma midf_lt x y : x < y (x < mid x y) × (mid x y < y).
- -
-Definition midf_lte := (midf_le, midf_lt).
- -
-
- -
- The AGM, unscaled but without the nth root. -
-
- -
-Lemma real_lerif_mean_square x y :
-  x \is real y \is real x × y mid (x ^+ 2) (y ^+ 2) ?= iff (x == y).
- -
-Lemma real_lerif_AGM2 x y :
-  x \is real y \is real x × y mid x y ^+ 2 ?= iff (x == y).
- -
-Lemma lerif_AGM (I : finType) (A : {pred I}) (E : I F) :
-    let n := #|A| in let mu := (\sum_(i in A) E i) / n%:R in
-    {in A, i, 0 E i}
-  \prod_(i in A) E i mu ^+ n
-                     ?= iff [ i in A, j in A, E i == E j].
- -
-Implicit Type p : {poly F}.
-Lemma Cauchy_root_bound p : p != 0 {b | x, root p x `|x| b}.
- -
-Import GroupScope.
- -
-Lemma natf_indexg (gT : finGroupType) (G H : {group gT}) :
-  H \subset G #|G : H|%:R = (#|G|%:R / #|H|%:R)%R :> F.
- -
-End NumFieldTheory.
- -
-Section RealDomainTheory.
- -
-Hint Resolve lerr : core.
- -
-Variable R : realDomainType.
-Implicit Types x y z t : R.
- -
-Lemma num_real x : x \is real.
-Hint Resolve num_real : core.
- -
-Lemma ler_total : total (@le R).
- -
-Lemma ltr_total x y : x != y (x < y) || (y < x).
- -
-Lemma wlog_ler P :
-     ( a b, P b a P a b) ( a b, a b P a b)
-    a b : R, P a b.
- -
-Lemma wlog_ltr P :
-    ( a, P a a)
-    ( a b, (P b a P a b)) ( a b, a < b P a b)
-   a b : R, P a b.
- -
-Lemma ltrNge x y : (x < y) = ~~ (y x).
- -
-Lemma lerNgt x y : (x y) = ~~ (y < x).
- -
-Lemma lerP x y : ler_xor_gt x y `|x - y| `|y - x| (x y) (y < x).
- -
-Lemma ltrP x y : ltr_xor_ge x y `|x - y| `|y - x| (y x) (x < y).
- -
-Lemma ltrgtP x y :
-   comparer x y `|x - y| `|y - x| (y == x) (x == y)
-                 (x y) (y x) (x < y) (x > y) .
- -
-Lemma ger0P x : ger0_xor_lt0 x `|x| (x < 0) (0 x).
- -
-Lemma ler0P x : ler0_xor_gt0 x `|x| (0 < x) (x 0).
- -
-Lemma ltrgt0P x :
-  comparer0 x `|x| (0 == x) (x == 0) (x 0) (0 x) (x < 0) (x > 0).
- -
-Lemma neqr_lt x y : (x != y) = (x < y) || (y < x).
- -
-Lemma eqr_leLR x y z t :
-  (x y z t) (y < x t < z) (x y) = (z t).
- -
-Lemma eqr_leRL x y z t :
-  (x y z t) (y < x t < z) (z t) = (x y).
- -
-Lemma eqr_ltLR x y z t :
-  (x < y z < t) (y x t z) (x < y) = (z < t).
- -
-Lemma eqr_ltRL x y z t :
-  (x < y z < t) (y x t z) (z < t) = (x < y).
- -
-
- -
- sign -
-
- -
-Lemma mulr_lt0 x y :
-  (x × y < 0) = [&& x != 0, y != 0 & (x < 0) (+) (y < 0)].
- -
-Lemma neq0_mulr_lt0 x y :
-  x != 0 y != 0 (x × y < 0) = (x < 0) (+) (y < 0).
- -
-Lemma mulr_sign_lt0 (b : bool) x :
-  ((-1) ^+ b × x < 0) = (x != 0) && (b (+) (x < 0)%R).
- -
-
- -
- sign & norm -
-
- -
-Lemma mulr_sign_norm x : (-1) ^+ (x < 0)%R × `|x| = x.
- -
-Lemma mulr_Nsign_norm x : (-1) ^+ (0 < x)%R × `|x| = - x.
- -
-Lemma numEsign x : x = (-1) ^+ (x < 0)%R × `|x|.
- -
-Lemma numNEsign x : -x = (-1) ^+ (0 < x)%R × `|x|.
- -
-Lemma normrEsign x : `|x| = (-1) ^+ (x < 0)%R × x.
- -
-End RealDomainTheory.
- -
-Hint Resolve num_real : core.
- -
-Section RealDomainMonotony.
- -
-Variables (R : realDomainType) (R' : numDomainType) (D : pred R).
-Variables (f : R R') (f' : R nat).
-Implicit Types (m n p : nat) (x y z : R) (u v w : R').
- -
-Hint Resolve (@num_real R) : core.
- -
-Lemma ler_mono : {homo f : x y / x < y} {mono f : x y / x y}.
- -
-Lemma ler_nmono : {homo f : x y /~ x < y} {mono f : x y /~ x y}.
- -
-Lemma ler_mono_in :
-  {in D &, {homo f : x y / x < y}} {in D &, {mono f : x y / x y}}.
- -
-Lemma ler_nmono_in :
-  {in D &, {homo f : x y /~ x < y}} {in D &, {mono f : x y /~ x y}}.
- -
-Lemma lern_mono : {homo f' : m n / m < n >-> (m < n)%N}
-   {mono f' : m n / m n >-> (m n)%N}.
- -
-Lemma lern_nmono : {homo f' : m n / n < m >-> (m < n)%N}
-  {mono f' : m n / n m >-> (m n)%N}.
- -
-Lemma lern_mono_in : {in D &, {homo f' : m n / m < n >-> (m < n)%N}}
-   {in D &, {mono f' : m n / m n >-> (m n)%N}}.
- -
-Lemma lern_nmono_in : {in D &, {homo f' : m n / n < m >-> (m < n)%N}}
-  {in D &, {mono f' : m n / n m >-> (m n)%N}}.
- -
-End RealDomainMonotony.
- -
-Section RealDomainArgExtremum.
- -
-Context {R : realDomainType} {I : finType} (i0 : I).
-Context (P : pred I) (F : I R) (Pi0 : P i0).
- -
-Definition arg_minr := extremum <=%R i0 P F.
-Definition arg_maxr := extremum >=%R i0 P F.
- -
-Lemma arg_minrP: extremum_spec <=%R P F arg_minr.
- -
-Lemma arg_maxrP: extremum_spec >=%R P F arg_maxr.
- -
-End RealDomainArgExtremum.
- -
-Notation "[ 'arg' 'minr_' ( i < i0 | P ) F ]" :=
-    (arg_minr i0 (fun iP%B) (fun iF))
-  (at level 0, i, i0 at level 10,
-   format "[ 'arg' 'minr_' ( i < i0 | P ) F ]") : form_scope.
- -
-Notation "[ 'arg' 'minr_' ( i < i0 'in' A ) F ]" :=
-    [arg minr_(i < i0 | i \in A) F]
-  (at level 0, i, i0 at level 10,
-   format "[ 'arg' 'minr_' ( i < i0 'in' A ) F ]") : form_scope.
- -
-Notation "[ 'arg' 'minr_' ( i < i0 ) F ]" := [arg minr_(i < i0 | true) F]
-  (at level 0, i, i0 at level 10,
-   format "[ 'arg' 'minr_' ( i < i0 ) F ]") : form_scope.
- -
-Notation "[ 'arg' 'maxr_' ( i > i0 | P ) F ]" :=
-     (arg_maxr i0 (fun iP%B) (fun iF))
-  (at level 0, i, i0 at level 10,
-   format "[ 'arg' 'maxr_' ( i > i0 | P ) F ]") : form_scope.
- -
-Notation "[ 'arg' 'maxr_' ( i > i0 'in' A ) F ]" :=
-    [arg maxr_(i > i0 | i \in A) F]
-  (at level 0, i, i0 at level 10,
-   format "[ 'arg' 'maxr_' ( i > i0 'in' A ) F ]") : form_scope.
- -
-Notation "[ 'arg' 'maxr_' ( i > i0 ) F ]" := [arg maxr_(i > i0 | true) F]
-  (at level 0, i, i0 at level 10,
-   format "[ 'arg' 'maxr_' ( i > i0 ) F ]") : form_scope.
- -
-Section RealDomainOperations.
- -
-
- -
- sgr section -
-
- -
-Variable R : realDomainType.
-Implicit Types x y z t : R.
-Hint Resolve (@num_real R) : core.
- -
-Lemma sgr_cp0 x :
-  ((sg x == 1) = (0 < x)) ×
-  ((sg x == -1) = (x < 0)) ×
-  ((sg x == 0) = (x == 0)).
- -
-Variant sgr_val x : R bool bool bool bool bool bool
-   bool bool bool bool bool bool R Set :=
-  | SgrNull of x = 0 : sgr_val x 0 true true true true false false
-    true false false true false false 0
-  | SgrPos of x > 0 : sgr_val x x false false true false false true
-    false false true false false true 1
-  | SgrNeg of x < 0 : sgr_val x (- x) false true false false true false
-    false true false false true false (-1).
- -
-Lemma sgrP x :
-  sgr_val x `|x| (0 == x) (x 0) (0 x) (x == 0) (x < 0) (0 < x)
-                 (0 == sg x) (-1 == sg x) (1 == sg x)
-                 (sg x == 0) (sg x == -1) (sg x == 1) (sg x).
- -
-Lemma normrEsg x : `|x| = sg x × x.
- -
-Lemma numEsg x : x = sg x × `|x|.
- -
-
- -
- GG: duplicate! -
-
-Lemma mulr_sg_norm x : sg x × `|x| = x.
- -
-Lemma sgrM x y : sg (x × y) = sg x × sg y.
- -
-Lemma sgrN x : sg (- x) = - sg x.
- -
-Lemma sgrX n x : sg (x ^+ n) = (sg x) ^+ n.
- -
-Lemma sgr_smul x y : sg (sg x × y) = sg x × sg y.
- -
-Lemma sgr_gt0 x : (sg x > 0) = (x > 0).
- -
-Lemma sgr_ge0 x : (sgr x 0) = (x 0).
- -
-
- -
- norm section -
-
- -
-Lemma ler_norm x : (x `|x|).
- -
-Lemma ler_norml x y : (`|x| y) = (- y x y).
- -
-Lemma ler_normlP x y : reflect ((- x y) × (x y)) (`|x| y).
- -
-Lemma eqr_norml x y : (`|x| == y) = ((x == y) || (x == -y)) && (0 y).
- -
-Lemma eqr_norm2 x y : (`|x| == `|y|) = (x == y) || (x == -y).
- -
-Lemma ltr_norml x y : (`|x| < y) = (- y < x < y).
- -
-Definition lter_norml := (ler_norml, ltr_norml).
- -
-Lemma ltr_normlP x y : reflect ((-x < y) × (x < y)) (`|x| < y).
- -
-Lemma ler_normr x y : (x `|y|) = (x y) || (x - y).
- -
-Lemma ltr_normr x y : (x < `|y|) = (x < y) || (x < - y).
- -
-Definition lter_normr := (ler_normr, ltr_normr).
- -
-Lemma ler_distl x y e : (`|x - y| e) = (y - e x y + e).
- -
-Lemma ltr_distl x y e : (`|x - y| < e) = (y - e < x < y + e).
- -
-Definition lter_distl := (ler_distl, ltr_distl).
- -
-Lemma exprn_even_ge0 n x : ~~ odd n 0 x ^+ n.
- -
-Lemma exprn_even_gt0 n x : ~~ odd n (0 < x ^+ n) = (n == 0)%N || (x != 0).
- -
-Lemma exprn_even_le0 n x : ~~ odd n (x ^+ n 0) = (n != 0%N) && (x == 0).
- -
-Lemma exprn_even_lt0 n x : ~~ odd n (x ^+ n < 0) = false.
- -
-Lemma exprn_odd_ge0 n x : odd n (0 x ^+ n) = (0 x).
- -
-Lemma exprn_odd_gt0 n x : odd n (0 < x ^+ n) = (0 < x).
- -
-Lemma exprn_odd_le0 n x : odd n (x ^+ n 0) = (x 0).
- -
-Lemma exprn_odd_lt0 n x : odd n (x ^+ n < 0) = (x < 0).
- -
-
- -
- Special lemmas for squares. -
-
- -
-Lemma sqr_ge0 x : 0 x ^+ 2.
- -
-Lemma sqr_norm_eq1 x : (x ^+ 2 == 1) = (`|x| == 1).
- -
-Lemma lerif_mean_square_scaled x y :
-  x × y *+ 2 x ^+ 2 + y ^+ 2 ?= iff (x == y).
- -
-Lemma lerif_AGM2_scaled x y : x × y *+ 4 (x + y) ^+ 2 ?= iff (x == y).
- -
-Section MinMax.
- -
-
- -
- GG: Many of the first lemmas hold unconditionally, and others hold for - the real subset of a general domain. -
-
-Lemma minrC : @commutative R R min.
- -
-Lemma minrr : @idempotent R min.
- -
-Lemma minr_l x y : x y min x y = x.
- -
-Lemma minr_r x y : y x min x y = y.
- -
-Lemma maxrC : @commutative R R max.
- -
-Lemma maxrr : @idempotent R max.
- -
-Lemma maxr_l x y : y x max x y = x.
- -
-Lemma maxr_r x y : x y max x y = y.
- -
-Lemma addr_min_max x y : min x y + max x y = x + y.
- -
-Lemma addr_max_min x y : max x y + min x y = x + y.
- -
-Lemma minr_to_max x y : min x y = x + y - max x y.
- -
-Lemma maxr_to_min x y : max x y = x + y - min x y.
- -
-Lemma minrA x y z : min x (min y z) = min (min x y) z.
- -
-Lemma minrCA : @left_commutative R R min.
- -
-Lemma minrAC : @right_commutative R R min.
- -
-Variant minr_spec x y : bool bool R Type :=
-| Minr_r of x y : minr_spec x y true false x
-| Minr_l of y < x : minr_spec x y false true y.
- -
-Lemma minrP x y : minr_spec x y (x y) (y < x) (min x y).
- -
-Lemma oppr_max x y : - max x y = min (- x) (- y).
- -
-Lemma oppr_min x y : - min x y = max (- x) (- y).
- -
-Lemma maxrA x y z : max x (max y z) = max (max x y) z.
- -
-Lemma maxrCA : @left_commutative R R max.
- -
-Lemma maxrAC : @right_commutative R R max.
- -
-Variant maxr_spec x y : bool bool R Type :=
-| Maxr_r of y x : maxr_spec x y true false x
-| Maxr_l of x < y : maxr_spec x y false true y.
- -
-Lemma maxrP x y : maxr_spec x y (y x) (x < y) (maxr x y).
- -
-Lemma eqr_minl x y : (min x y == x) = (x y).
- -
-Lemma eqr_minr x y : (min x y == y) = (y x).
- -
-Lemma eqr_maxl x y : (max x y == x) = (y x).
- -
-Lemma eqr_maxr x y : (max x y == y) = (x y).
- -
-Lemma ler_minr x y z : (x min y z) = (x y) && (x z).
- -
-Lemma ler_minl x y z : (min y z x) = (y x) || (z x).
- -
-Lemma ler_maxr x y z : (x max y z) = (x y) || (x z).
- -
-Lemma ler_maxl x y z : (max y z x) = (y x) && (z x).
- -
-Lemma ltr_minr x y z : (x < min y z) = (x < y) && (x < z).
- -
-Lemma ltr_minl x y z : (min y z < x) = (y < x) || (z < x).
- -
-Lemma ltr_maxr x y z : (x < max y z) = (x < y) || (x < z).
- -
-Lemma ltr_maxl x y z : (max y z < x) = (y < x) && (z < x).
- -
-Definition lter_minr := (ler_minr, ltr_minr).
-Definition lter_minl := (ler_minl, ltr_minl).
-Definition lter_maxr := (ler_maxr, ltr_maxr).
-Definition lter_maxl := (ler_maxl, ltr_maxl).
- -
-Lemma addr_minl : @left_distributive R R +%R min.
- -
-Lemma addr_minr : @right_distributive R R +%R min.
- -
-Lemma addr_maxl : @left_distributive R R +%R max.
- -
-Lemma addr_maxr : @right_distributive R R +%R max.
- -
-Lemma minrK x y : max (min x y) x = x.
- -
-Lemma minKr x y : min y (max x y) = y.
- -
-Lemma maxr_minl : @left_distributive R R max min.
- -
-Lemma maxr_minr : @right_distributive R R max min.
- -
-Lemma minr_maxl : @left_distributive R R min max.
- -
-Lemma minr_maxr : @right_distributive R R min max.
- -
-Lemma minr_pmulr x y z : 0 x x × min y z = min (x × y) (x × z).
- -
-Lemma minr_nmulr x y z : x 0 x × min y z = max (x × y) (x × z).
- -
-Lemma maxr_pmulr x y z : 0 x x × max y z = max (x × y) (x × z).
- -
-Lemma maxr_nmulr x y z : x 0 x × max y z = min (x × y) (x × z).
- -
-Lemma minr_pmull x y z : 0 x min y z × x = min (y × x) (z × x).
- -
-Lemma minr_nmull x y z : x 0 min y z × x = max (y × x) (z × x).
- -
-Lemma maxr_pmull x y z : 0 x max y z × x = max (y × x) (z × x).
- -
-Lemma maxr_nmull x y z : x 0 max y z × x = min (y × x) (z × x).
- -
-Lemma maxrN x : max x (- x) = `|x|.
- -
-Lemma maxNr x : max (- x) x = `|x|.
- -
-Lemma minrN x : min x (- x) = - `|x|.
- -
-Lemma minNr x : min (- x) x = - `|x|.
- -
-End MinMax.
- -
-Section PolyBounds.
- -
-Variable p : {poly R}.
- -
-Lemma poly_itv_bound a b : {ub | x, a x b `|p.[x]| ub}.
- -
-Lemma monic_Cauchy_bound : p \is monic {b | x, x b p.[x] > 0}.
- -
-End PolyBounds.
- -
-End RealDomainOperations.
- -
-Section RealField.
- -
-Variables (F : realFieldType) (x y : F).
- -
-Lemma lerif_mean_square : x × y (x ^+ 2 + y ^+ 2) / 2%:R ?= iff (x == y).
- -
-Lemma lerif_AGM2 : x × y ((x + y) / 2%:R)^+ 2 ?= iff (x == y).
- -
-End RealField.
- -
-Section ArchimedeanFieldTheory.
- -
-Variables (F : archiFieldType) (x : F).
- -
-Lemma archi_boundP : 0 x x < (bound x)%:R.
- -
-Lemma upper_nthrootP i : (bound x i)%N x < 2%:R ^+ i.
- -
-End ArchimedeanFieldTheory.
- -
-Section RealClosedFieldTheory.
- -
-Variable R : rcfType.
-Implicit Types a x y : R.
- -
-Lemma poly_ivt : real_closed_axiom R.
- -
-
- -
- Square Root theory -
-
- -
-Lemma sqrtr_ge0 a : 0 sqrt a.
- Hint Resolve sqrtr_ge0 : core.
- -
-Lemma sqr_sqrtr a : 0 a sqrt a ^+ 2 = a.
- -
-Lemma ler0_sqrtr a : a 0 sqrt a = 0.
- -
-Lemma ltr0_sqrtr a : a < 0 sqrt a = 0.
- -
-Variant sqrtr_spec a : R bool bool R Type :=
-| IsNoSqrtr of a < 0 : sqrtr_spec a a false true 0
-| IsSqrtr b of 0 b : sqrtr_spec a (b ^+ 2) true false b.
- -
-Lemma sqrtrP a : sqrtr_spec a a (0 a) (a < 0) (sqrt a).
- -
-Lemma sqrtr_sqr a : sqrt (a ^+ 2) = `|a|.
- -
-Lemma sqrtrM a b : 0 a sqrt (a × b) = sqrt a × sqrt b.
- -
-Lemma sqrtr0 : sqrt 0 = 0 :> R.
- -
-Lemma sqrtr1 : sqrt 1 = 1 :> R.
- -
-Lemma sqrtr_eq0 a : (sqrt a == 0) = (a 0).
- -
-Lemma sqrtr_gt0 a : (0 < sqrt a) = (0 < a).
- -
-Lemma eqr_sqrt a b : 0 a 0 b (sqrt a == sqrt b) = (a == b).
- -
-Lemma ler_wsqrtr : {homo @sqrt R : a b / a b}.
- -
-Lemma ler_psqrt : {in @pos R &, {mono sqrt : a b / a b}}.
- -
-Lemma ler_sqrt a b : 0 < b (sqrt a sqrt b) = (a b).
- -
-Lemma ltr_sqrt a b : 0 < b (sqrt a < sqrt b) = (a < b).
- -
-End RealClosedFieldTheory.
- -
-Definition conjC {C : numClosedFieldType} : {rmorphism C C} :=
ClosedField.conj_op (ClosedField.conj_mixin (ClosedField.class C)).
-Notation "z ^*" := (@conjC _ z) (at level 2, format "z ^*") : ring_scope.
- -
-Definition imaginaryC {C : numClosedFieldType} : C :=
ClosedField.imaginary (ClosedField.conj_mixin (ClosedField.class C)).
-Notation "'i" := (@imaginaryC _) (at level 0) : ring_scope.
- -
-Section ClosedFieldTheory.
- -
-Variable C : numClosedFieldType.
-Implicit Types a x y z : C.
- -
-Definition normCK x : `|x| ^+ 2 = x × x^*.
- -
-Lemma sqrCi : 'i ^+ 2 = -1 :> C.
- -
-Lemma conjCK : involutive (@conjC C).
- -
-Let Re2 z := z + z^*.
-Definition nnegIm z := (0 imaginaryC × (z^* - z)).
-Definition argCle y z := nnegIm z ==> nnegIm y && (Re2 z Re2 y).
- -
-Variant rootC_spec n (x : C) : Type :=
-  RootCspec (y : C) of if (n > 0)%N then y ^+ n = x else y = 0
-                        & z, (n > 0)%N z ^+ n = x argCle y z.
- -
-Fact rootC_subproof n x : rootC_spec n x.
- -
-Definition nthroot n x := let: RootCspec y _ _ := rootC_subproof n x in y.
-Notation "n .-root" := (nthroot n) (at level 2, format "n .-root") : ring_core_scope.
-Notation "n .-root" := (nthroot n) (only parsing) : ring_scope.
-Notation sqrtC := 2.-root.
- -
-Definition Re x := (x + x^*) / 2%:R.
-Definition Im x := 'i × (x^* - x) / 2%:R.
-Notation "'Re z" := (Re z) (at level 10, z at level 8) : ring_scope.
-Notation "'Im z" := (Im z) (at level 10, z at level 8) : ring_scope.
- -
-Let nz2 : 2%:R != 0 :> C.
- -
-Lemma normCKC x : `|x| ^+ 2 = x^* × x.
- -
-Lemma mul_conjC_ge0 x : 0 x × x^*.
- -
-Lemma mul_conjC_gt0 x : (0 < x × x^*) = (x != 0).
- -
-Lemma mul_conjC_eq0 x : (x × x^* == 0) = (x == 0).
- -
-Lemma conjC_ge0 x : (0 x^*) = (0 x).
- -
-Lemma conjC_nat n : (n%:R)^* = n%:R :> C.
-Lemma conjC0 : 0^* = 0 :> C.
-Lemma conjC1 : 1^* = 1 :> C.
-Lemma conjC_eq0 x : (x^* == 0) = (x == 0).
- -
-Lemma invC_norm x : x^-1 = `|x| ^- 2 × x^*.
- -
-
- -
- Real number subset. -
-
- -
-Lemma CrealE x : (x \is real) = (x^* == x).
- -
-Lemma CrealP {x} : reflect (x^* = x) (x \is real).
- -
-Lemma conj_Creal x : x \is real x^* = x.
- -
-Lemma conj_normC z : `|z|^* = `|z|.
- -
-Lemma geC0_conj x : 0 x x^* = x.
- -
-Lemma geC0_unit_exp x n : 0 x (x ^+ n.+1 == 1) = (x == 1).
- -
-
- -
- Elementary properties of roots. -
-
- -
-Ltac case_rootC := rewrite /nthroot; case: (rootC_subproof _ _).
- -
-Lemma root0C x : 0.-root x = 0.
- -
-Lemma rootCK n : (n > 0)%N cancel n.-root (fun xx ^+ n).
- -
-Lemma root1C x : 1.-root x = x.
- -
-Lemma rootC0 n : n.-root 0 = 0.
- -
-Lemma rootC_inj n : (n > 0)%N injective n.-root.
- -
-Lemma eqr_rootC n : (n > 0)%N {mono n.-root : x y / x == y}.
- -
-Lemma rootC_eq0 n x : (n > 0)%N (n.-root x == 0) = (x == 0).
- -
-
- -
- Rectangular coordinates. -
-
- -
-Lemma nonRealCi : ('i : C) \isn't real.
- -
-Lemma neq0Ci : 'i != 0 :> C.
- -
-Lemma normCi : `|'i| = 1 :> C.
- -
-Lemma invCi : 'i^-1 = - 'i :> C.
- -
-Lemma conjCi : 'i^* = - 'i :> C.
- -
-Lemma Crect x : x = 'Re x + 'i × 'Im x.
- -
-Lemma Creal_Re x : 'Re x \is real.
- -
-Lemma Creal_Im x : 'Im x \is real.
-Hint Resolve Creal_Re Creal_Im : core.
- -
-Fact Re_is_additive : additive Re.
- Canonical Re_additive := Additive Re_is_additive.
- -
-Fact Im_is_additive : additive Im.
-Canonical Im_additive := Additive Im_is_additive.
- -
-Lemma Creal_ImP z : reflect ('Im z = 0) (z \is real).
- -
-Lemma Creal_ReP z : reflect ('Re z = z) (z \in real).
- -
-Lemma ReMl : {in real, x, {morph Re : z / x × z}}.
- -
-Lemma ReMr : {in real, x, {morph Re : z / z × x}}.
- -
-Lemma ImMl : {in real, x, {morph Im : z / x × z}}.
- -
-Lemma ImMr : {in real, x, {morph Im : z / z × x}}.
- -
-Lemma Re_i : 'Re 'i = 0.
- -
-Lemma Im_i : 'Im 'i = 1.
- -
-Lemma Re_conj z : 'Re z^* = 'Re z.
- -
-Lemma Im_conj z : 'Im z^* = - 'Im z.
- -
-Lemma Re_rect : {in real &, x y, 'Re (x + 'i × y) = x}.
- -
-Lemma Im_rect : {in real &, x y, 'Im (x + 'i × y) = y}.
- -
-Lemma conjC_rect : {in real &, x y, (x + 'i × y)^* = x - 'i × y}.
- -
-Lemma addC_rect x1 y1 x2 y2 :
-  (x1 + 'i × y1) + (x2 + 'i × y2) = x1 + x2 + 'i × (y1 + y2).
- -
-Lemma oppC_rect x y : - (x + 'i × y) = - x + 'i × (- y).
- -
-Lemma subC_rect x1 y1 x2 y2 :
-  (x1 + 'i × y1) - (x2 + 'i × y2) = x1 - x2 + 'i × (y1 - y2).
- -
-Lemma mulC_rect x1 y1 x2 y2 :
-  (x1 + 'i × y1) × (x2 + 'i × y2)
-      = x1 × x2 - y1 × y2 + 'i × (x1 × y2 + x2 × y1).
- -
-Lemma normC2_rect :
-  {in real &, x y, `|x + 'i × y| ^+ 2 = x ^+ 2 + y ^+ 2}.
- -
-Lemma normC2_Re_Im z : `|z| ^+ 2 = 'Re z ^+ 2 + 'Im z ^+ 2.
- -
-Lemma invC_rect :
-  {in real &, x y, (x + 'i × y)^-1 = (x - 'i × y) / (x ^+ 2 + y ^+ 2)}.
- -
-Lemma lerif_normC_Re_Creal z : `|'Re z| `|z| ?= iff (z \is real).
- -
-Lemma lerif_Re_Creal z : 'Re z `|z| ?= iff (0 z).
- -
-
- -
- Equality from polar coordinates, for the upper plane. -
-
-Lemma eqC_semipolar x y :
-  `|x| = `|y| 'Re x = 'Re y 0 'Im x × 'Im y x = y.
- -
-
- -
- Nth roots. -
-
- -
-Let argCleP y z :
-  reflect (0 'Im z 0 'Im y 'Re z 'Re y) (argCle y z).
-
- -
- case Du: sqrCi => [u u2N1] /=. - have/eqP := u2N1; rewrite -sqrCi eqf_sqr => /pred2P[ ] //. - have:= conjCi; rewrite /'i; case_rootC => /= v v2n1 min_v conj_v Duv. - have{min_v} /idPn[ ] := min_v u isT u2N1; rewrite negb_imply /nnegIm Du /= Duv. - rewrite rmorphN conj_v opprK -opprD mulrNN mulNr -mulr2n mulrnAr -expr2 v2n1. - by rewrite mulNrn opprK ler0n oppr_ge0 (ler_nat _ 2 0). -
-
- -
-Lemma rootC_Re_max n x y :
-  (n > 0)%N y ^+ n = x 0 'Im y 'Re y 'Re (n.-root x).
- -
-Let neg_unity_root n : (n > 1)%N exists2 w : C, w ^+ n = 1 & 'Re w < 0.
- -
-Lemma Im_rootC_ge0 n x : (n > 1)%N 0 'Im (n.-root x).
- -
-Lemma rootC_lt0 n x : (1 < n)%N (n.-root x < 0) = false.
- -
-Lemma rootC_ge0 n x : (n > 0)%N (0 n.-root x) = (0 x).
- -
-Lemma rootC_gt0 n x : (n > 0)%N (n.-root x > 0) = (x > 0).
- -
-Lemma rootC_le0 n x : (1 < n)%N (n.-root x 0) = (x == 0).
- -
-Lemma ler_rootCl n : (n > 0)%N {in Num.nneg, {mono n.-root : x y / x y}}.
- -
-Lemma ler_rootC n : (n > 0)%N {in Num.nneg &, {mono n.-root : x y / x y}}.
- -
-Lemma ltr_rootCl n : (n > 0)%N {in Num.nneg, {mono n.-root : x y / x < y}}.
- -
-Lemma ltr_rootC n : (n > 0)%N {in Num.nneg &, {mono n.-root : x y / x < y}}.
- -
-Lemma exprCK n x : (0 < n)%N 0 x n.-root (x ^+ n) = x.
- -
-Lemma norm_rootC n x : `|n.-root x| = n.-root `|x|.
- -
-Lemma rootCX n x k : (n > 0)%N 0 x n.-root (x ^+ k) = n.-root x ^+ k.
- -
-Lemma rootC1 n : (n > 0)%N n.-root 1 = 1.
- -
-Lemma rootCpX n x k : (k > 0)%N 0 x n.-root (x ^+ k) = n.-root x ^+ k.
- -
-Lemma rootCV n x : (n > 0)%N 0 x n.-root x^-1 = (n.-root x)^-1.
- -
-Lemma rootC_eq1 n x : (n > 0)%N (n.-root x == 1) = (x == 1).
- -
-Lemma rootC_ge1 n x : (n > 0)%N (n.-root x 1) = (x 1).
- -
-Lemma rootC_gt1 n x : (n > 0)%N (n.-root x > 1) = (x > 1).
- -
-Lemma rootC_le1 n x : (n > 0)%N 0 x (n.-root x 1) = (x 1).
- -
-Lemma rootC_lt1 n x : (n > 0)%N 0 x (n.-root x < 1) = (x < 1).
- -
-Lemma rootCMl n x z : 0 x n.-root (x × z) = n.-root x × n.-root z.
- -
-Lemma rootCMr n x z : 0 x n.-root (z × x) = n.-root z × n.-root x.
- -
-Lemma imaginaryCE : 'i = sqrtC (-1).
- -
-
- -
- More properties of n.-root will be established in cyclotomic.v. -
- - The proper form of the Arithmetic - Geometric Mean inequality. -
-
- -
-Lemma lerif_rootC_AGM (I : finType) (A : {pred I}) (n := #|A|) E :
-    {in A, i, 0 E i}
-  n.-root (\prod_(i in A) E i) (\sum_(i in A) E i) / n%:R
-                             ?= iff [ i in A, j in A, E i == E j].
- -
-
- -
- Square root. -
-
- -
-Lemma sqrtC0 : sqrtC 0 = 0.
-Lemma sqrtC1 : sqrtC 1 = 1.
-Lemma sqrtCK x : sqrtC x ^+ 2 = x.
-Lemma sqrCK x : 0 x sqrtC (x ^+ 2) = x.
- -
-Lemma sqrtC_ge0 x : (0 sqrtC x) = (0 x).
-Lemma sqrtC_eq0 x : (sqrtC x == 0) = (x == 0).
-Lemma sqrtC_gt0 x : (sqrtC x > 0) = (x > 0).
-Lemma sqrtC_lt0 x : (sqrtC x < 0) = false.
-Lemma sqrtC_le0 x : (sqrtC x 0) = (x == 0).
- -
-Lemma ler_sqrtC : {in Num.nneg &, {mono sqrtC : x y / x y}}.
- Lemma ltr_sqrtC : {in Num.nneg &, {mono sqrtC : x y / x < y}}.
- Lemma eqr_sqrtC : {mono sqrtC : x y / x == y}.
- Lemma sqrtC_inj : injective sqrtC.
- Lemma sqrtCM : {in Num.nneg &, {morph sqrtC : x y / x × y}}.
- -
-Lemma sqrCK_P x : reflect (sqrtC (x ^+ 2) = x) ((0 'Im x) && ~~ (x < 0)).
- -
-Lemma normC_def x : `|x| = sqrtC (x × x^*).
- -
-Lemma norm_conjC x : `|x^*| = `|x|.
- -
-Lemma normC_rect :
-  {in real &, x y, `|x + 'i × y| = sqrtC (x ^+ 2 + y ^+ 2)}.
- -
-Lemma normC_Re_Im z : `|z| = sqrtC ('Re z ^+ 2 + 'Im z ^+ 2).
- -
-
- -
- Norm sum (in)equalities. -
-
- -
-Lemma normC_add_eq x y :
-    `|x + y| = `|x| + `|y|
-  {t : C | `|t| == 1 & (x, y) = (`|x| × t, `|y| × t)}.
- -
-Lemma normC_sum_eq (I : finType) (P : pred I) (F : I C) :
-     `|\sum_(i | P i) F i| = \sum_(i | P i) `|F i|
-   {t : C | `|t| == 1 & i, P i F i = `|F i| × t}.
- -
-Lemma normC_sum_eq1 (I : finType) (P : pred I) (F : I C) :
-    `|\sum_(i | P i) F i| = (\sum_(i | P i) `|F i|)
-     ( i, P i `|F i| = 1)
-   {t : C | `|t| == 1 & i, P i F i = t}.
- -
-Lemma normC_sum_upper (I : finType) (P : pred I) (F G : I C) :
-     ( i, P i `|F i| G i)
-     \sum_(i | P i) F i = \sum_(i | P i) G i
-    i, P i F i = G i.
- -
-Lemma normC_sub_eq x y :
-  `|x - y| = `|x| - `|y| {t | `|t| == 1 & (x, y) = (`|x| × t, `|y| × t)}.
- -
-End ClosedFieldTheory.
- -
-Notation "n .-root" := (@nthroot _ n)
-  (at level 2, format "n .-root") : ring_scope.
-Notation sqrtC := 2.-root.
-Notation "'i" := (@imaginaryC _) (at level 0) : ring_scope.
-Notation "'Re z" := (Re z) (at level 10, z at level 8) : ring_scope.
-Notation "'Im z" := (Im z) (at level 10, z at level 8) : ring_scope.
- -
- -
-End Theory.
- -
-Module RealMixin.
- -
-Section RealMixins.
- -
-Variables (R : idomainType) (le : rel R) (lt : rel R) (norm : R R).
- -
-Section LeMixin.
- -
-Hypothesis le0_add : x y, 0 x 0 y 0 x + y.
-Hypothesis le0_mul : x y, 0 x 0 y 0 x × y.
-Hypothesis le0_anti : x, 0 x x 0 x = 0.
-Hypothesis sub_ge0 : x y, (0 y - x) = (x y).
-Hypothesis le0_total : x, (0 x) || (x 0).
-Hypothesis normN: x, `|- x| = `|x|.
-Hypothesis ge0_norm : x, 0 x `|x| = x.
-Hypothesis lt_def : x y, (x < y) = (y != x) && (x y).
- -
-Let le0N x : (0 - x) = (x 0).
-Let leN_total x : 0 x 0 - x.
- -
-Let le00 : (0 0).
-Let le01 : (0 1).
- -
-Fact lt0_add x y : 0 < x 0 < y 0 < x + y.
- -
-Fact eq0_norm x : `|x| = 0 x = 0.
- -
-Fact le_def x y : (x y) = (`|y - x| == y - x).
- -
-Fact normM : {morph norm : x y / x × y}.
- -
-Fact le_normD x y : `|x + y| `|x| + `|y|.
- -
-Lemma le_total x y : (x y) || (y x).
- -
-Definition Le :=
-  Mixin le_normD lt0_add eq0_norm (in2W le_total) normM le_def lt_def.
- -
-Lemma Real (R' : numDomainType) & phant R' :
-  R' = NumDomainType R Le real_axiom R'.
- -
-End LeMixin.
- -
-Section LtMixin.
- -
-Hypothesis lt0_add : x y, 0 < x 0 < y 0 < x + y.
-Hypothesis lt0_mul : x y, 0 < x 0 < y 0 < x × y.
-Hypothesis lt0_ngt0 : x, 0 < x ~~ (x < 0).
-Hypothesis sub_gt0 : x y, (0 < y - x) = (x < y).
-Hypothesis lt0_total : x, x != 0 (0 < x) || (x < 0).
-Hypothesis normN : x, `|- x| = `|x|.
-Hypothesis ge0_norm : x, 0 x `|x| = x.
-Hypothesis le_def : x y, (x y) = (y == x) || (x < y).
- -
-Fact le0_add x y : 0 x 0 y 0 x + y.
- -
-Fact le0_mul x y : 0 x 0 y 0 x × y.
- -
-Fact le0_anti x : 0 x x 0 x = 0.
- -
-Fact sub_ge0 x y : (0 y - x) = (x y).
- -
-Fact lt_def x y : (x < y) = (y != x) && (x y).
- -
-Fact le0_total x : (0 x) || (x 0).
- -
-Definition Lt :=
-  Le le0_add le0_mul le0_anti sub_ge0 le0_total normN ge0_norm lt_def.
- -
-End LtMixin.
- -
-End RealMixins.
- -
-End RealMixin.
- -
-End Num.
- -
-Export Num.NumDomain.Exports Num.NumField.Exports Num.ClosedField.Exports.
-Export Num.RealDomain.Exports Num.RealField.Exports.
-Export Num.ArchimedeanField.Exports Num.RealClosedField.Exports.
-Export Num.Syntax Num.PredInstances.
- -
-Notation RealLeMixin := Num.RealMixin.Le.
-Notation RealLtMixin := Num.RealMixin.Lt.
-Notation RealLeAxiom R := (Num.RealMixin.Real (Phant R) (erefl _)).
-Notation ImaginaryMixin := Num.ClosedField.ImaginaryMixin.
-
-
- - - -
- - - \ No newline at end of file -- cgit v1.2.3