From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.algebra.ring_quotient.html | 769 +++++++++++++++++++++++ 1 file changed, 769 insertions(+) create mode 100644 docs/htmldoc/mathcomp.algebra.ring_quotient.html (limited to 'docs/htmldoc/mathcomp.algebra.ring_quotient.html') diff --git a/docs/htmldoc/mathcomp.algebra.ring_quotient.html b/docs/htmldoc/mathcomp.algebra.ring_quotient.html new file mode 100644 index 0000000..35d7bc6 --- /dev/null +++ b/docs/htmldoc/mathcomp.algebra.ring_quotient.html @@ -0,0 +1,769 @@ + + + + + +mathcomp.algebra.ring_quotient + + + + +
+ + + +
+ +

Library mathcomp.algebra.ring_quotient

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ This file describes quotients of algebraic structures. + +
+ + It defines a join hierarchy mxing the structures defined in file ssralg + (up to unit ring type) and the quotType quotient structure defined in + file generic_quotient. Every structure in that (join) hierarchy is + parametrized by a base type T and the constants and operations on the + base type that will be used to confer its algebraic structure to the + quotient. Note that T itself is in general not an instance of an + algebraic structure. The canonical surjection from T onto its quotient + should be compatible with the parameter operations. + +
+ + The second part of the file provides a definition of (non trivial) + decidable ideals (resp. prime ideals) of an arbitrary instance of ring + structure and a construction of the quotient of a ring by such an ideal. + These definitions extend the hierarchy of sub-structures defined in file + ssralg (see Module Pred in ssralg), following a similar methodology. + Although the definition of the (structure of) quotient of a ring by an + ideal is a general one, we do not provide infrastructure for the case of + non commutative ring and left or two-sided ideals. + +
+ + The file defines the following Structures: + zmodQuotType T e z n a == Z-module obtained by quotienting type T + with the relation e and whose neutral, + opposite and addition are the images in the + quotient of the parameters z, n and a, + respectively. + ringQuotType T e z n a o m == ring obtained by quotienting type T with + the relation e and whose zero opposite, + addition, one, and multiplication are the + images in the quotient of the parameters + z, n, a, o, m, respectively. + unitRingQuotType ... u i == As in the previous cases, instance of unit + ring whose unit predicate is obtained from + u and the inverse from i. + idealr R S == (S : pred R) is a non-trivial, decidable, + right ideal of the ring R. + prime_idealr R S == (S : pred R) is a non-trivial, decidable, + right, prime ideal of the ring R. + +
+ + The formalization of ideals features the following constructions: + proper_ideal S == the collective predicate (S : pred R) on the + ring R is stable by the ring product and does + contain R's one. + prime_idealr_closed S := u * v \in S -> (u \in S) || (v \in S) + idealr_closed S == the collective predicate (S : pred R) on the + ring R represents a (right) ideal. This + implies its being a proper_ideal. + +
+ + MkIdeal idealS == packs idealS : proper_ideal S into an + idealr S interface structure associating the + idealr_closed property to the canonical + pred_key S (see ssrbool), which must already + be an zmodPred (see ssralg). + MkPrimeIdeal pidealS == packs pidealS : prime_idealr_closed S into a + prime_idealr S interface structure associating + the prime_idealr_closed property to the + canonical pred_key S (see ssrbool), which must + already be an idealr (see above). + {ideal_quot kI} == quotient by the keyed (right) ideal predicate + kI of a commutative ring R. Note that we indeed + only provide canonical structures of ring + quotients for the case of commutative rings, + for which a right ideal is obviously a + two-sided ideal. + +
+ + Note : + if (I : pred R) is a predicate over a ring R and (ideal : idealr I) is an + instance of (right) ideal, in order to quantify over an arbitrary (keyed) + predicate describing ideal, use type (keyed_pred ideal), as in: + forall (kI : keyed_pred ideal),... +
+
+ +
+Import GRing.Theory.
+ +
+Set Implicit Arguments.
+ +
+Local Open Scope ring_scope.
+Local Open Scope quotient_scope.
+ +
+Reserved Notation "{ideal_quot I }" (at level 0, format "{ideal_quot I }").
+Reserved Notation "m = n %[mod_ideal I ]" (at level 70, n at next level,
+  format "'[hv ' m '/' = n '/' %[mod_ideal I ] ']'").
+Reserved Notation "m == n %[mod_ideal I ]" (at level 70, n at next level,
+  format "'[hv ' m '/' == n '/' %[mod_ideal I ] ']'").
+Reserved Notation "m <> n %[mod_ideal I ]" (at level 70, n at next level,
+  format "'[hv ' m '/' <> n '/' %[mod_ideal I ] ']'").
+Reserved Notation "m != n %[mod_ideal I ]" (at level 70, n at next level,
+  format "'[hv ' m '/' != n '/' %[mod_ideal I ] ']'").
+ +
+Section ZmodQuot.
+ +
+Variable (T : Type).
+Variable eqT : rel T.
+Variables (zeroT : T) (oppT : T T) (addT : T T T).
+ +
+Record zmod_quot_mixin_of (Q : Type) (qc : quot_class_of T Q)
+  (zc : GRing.Zmodule.class_of Q) := ZmodQuotMixinPack {
+    zmod_eq_quot_mixin :> eq_quot_mixin_of eqT qc zc;
+    _ : \pi_(QuotTypePack qc Q) zeroT = 0 :> GRing.Zmodule.Pack zc Q;
+    _ : {morph \pi_(QuotTypePack qc Q) : x /
+         oppT x >-> @GRing.opp (GRing.Zmodule.Pack zc Q) x};
+    _ : {morph \pi_(QuotTypePack qc Q) : x y /
+         addT x y >-> @GRing.add (GRing.Zmodule.Pack zc Q) x y}
+}.
+ +
+Record zmod_quot_class_of (Q : Type) : Type := ZmodQuotClass {
+  zmod_quot_quot_class :> quot_class_of T Q;
+  zmod_quot_zmod_class :> GRing.Zmodule.class_of Q;
+  zmod_quot_mixin :> zmod_quot_mixin_of
+    zmod_quot_quot_class zmod_quot_zmod_class
+}.
+ +
+Structure zmodQuotType : Type := ZmodQuotTypePack {
+  zmod_quot_sort :> Type;
+  _ : zmod_quot_class_of zmod_quot_sort;
+  _ : Type
+}.
+ +
+Implicit Type zqT : zmodQuotType.
+ +
+Definition zmod_quot_class zqT : zmod_quot_class_of zqT :=
+  let: ZmodQuotTypePack _ cT _ as qT' := zqT return zmod_quot_class_of qT' in cT.
+ +
+Definition zmod_eq_quot_class zqT (zqc : zmod_quot_class_of zqT) :
+  eq_quot_class_of eqT zqT := EqQuotClass zqc.
+ +
+Canonical zmodQuotType_eqType zqT := Equality.Pack (zmod_quot_class zqT) zqT.
+Canonical zmodQuotType_choiceType zqT :=
+  Choice.Pack (zmod_quot_class zqT) zqT.
+Canonical zmodQuotType_zmodType zqT :=
+  GRing.Zmodule.Pack (zmod_quot_class zqT) zqT.
+Canonical zmodQuotType_quotType zqT := QuotTypePack (zmod_quot_class zqT) zqT.
+Canonical zmodQuotType_eqQuotType zqT := EqQuotTypePack
+  (zmod_eq_quot_class (zmod_quot_class zqT)) zqT.
+ +
+Coercion zmodQuotType_eqType : zmodQuotType >-> eqType.
+Coercion zmodQuotType_choiceType : zmodQuotType >-> choiceType.
+Coercion zmodQuotType_zmodType : zmodQuotType >-> zmodType.
+Coercion zmodQuotType_quotType : zmodQuotType >-> quotType.
+Coercion zmodQuotType_eqQuotType : zmodQuotType >-> eqQuotType.
+ +
+Definition ZmodQuotType_pack Q :=
+  fun (qT : quotType T) (zT : zmodType) qc zc
+  of phant_id (quot_class qT) qc & phant_id (GRing.Zmodule.class zT) zc
+    fun mZmodQuotTypePack (@ZmodQuotClass Q qc zc m) Q.
+ +
+Definition ZmodQuotMixin_pack Q :=
+  fun (qT : eqQuotType eqT) (qc : eq_quot_class_of eqT Q)
+      of phant_id (eq_quot_class qT) qc
+  fun (zT : zmodType) zc of phant_id (GRing.Zmodule.class zT) zc
+    fun e m0 mN mD ⇒ @ZmodQuotMixinPack Q qc zc e m0 mN mD.
+ +
+Definition ZmodQuotType_clone (Q : Type) qT cT
+  of phant_id (zmod_quot_class qT) cT := @ZmodQuotTypePack Q cT Q.
+ +
+Lemma zmod_quot_mixinP zqT :
+  zmod_quot_mixin_of (zmod_quot_class zqT) (zmod_quot_class zqT).
+ +
+Lemma pi_zeror zqT : \pi_zqT zeroT = 0.
+ +
+Lemma pi_oppr zqT : {morph \pi_zqT : x / oppT x >-> - x}.
+ +
+Lemma pi_addr zqT : {morph \pi_zqT : x y / addT x y >-> x + y}.
+ +
+Canonical pi_zero_quot_morph zqT := PiMorph (pi_zeror zqT).
+Canonical pi_opp_quot_morph zqT := PiMorph1 (pi_oppr zqT).
+Canonical pi_add_quot_morph zqT := PiMorph2 (pi_addr zqT).
+ +
+End ZmodQuot.
+ +
+Notation ZmodQuotType z o a Q m :=
+  (@ZmodQuotType_pack _ _ z o a Q _ _ _ _ id id m).
+Notation "[ 'zmodQuotType' z , o & a 'of' Q ]" :=
+  (@ZmodQuotType_clone _ _ z o a Q _ _ id)
+  (at level 0, format "[ 'zmodQuotType' z , o & a 'of' Q ]") : form_scope.
+Notation ZmodQuotMixin Q m0 mN mD :=
+  (@ZmodQuotMixin_pack _ _ _ _ _ Q _ _ id _ _ id (pi_eq_quot _) m0 mN mD).
+ +
+Section PiAdditive.
+ +
+Variables (V : zmodType) (equivV : rel V) (zeroV : V).
+Variable Q : @zmodQuotType V equivV zeroV -%R +%R.
+ +
+Lemma pi_is_additive : additive \pi_Q.
+ +
+Canonical pi_additive := Additive pi_is_additive.
+ +
+End PiAdditive.
+ +
+Section RingQuot.
+ +
+Variable (T : Type).
+Variable eqT : rel T.
+Variables (zeroT : T) (oppT : T T) (addT : T T T).
+Variables (oneT : T) (mulT : T T T).
+ +
+Record ring_quot_mixin_of (Q : Type) (qc : quot_class_of T Q)
+  (rc : GRing.Ring.class_of Q) := RingQuotMixinPack {
+    ring_zmod_quot_mixin :> zmod_quot_mixin_of eqT zeroT oppT addT qc rc;
+    _ : \pi_(QuotTypePack qc Q) oneT = 1 :> GRing.Ring.Pack rc Q;
+    _ : {morph \pi_(QuotTypePack qc Q) : x y /
+         mulT x y >-> @GRing.mul (GRing.Ring.Pack rc Q) x y}
+}.
+ +
+Record ring_quot_class_of (Q : Type) : Type := RingQuotClass {
+  ring_quot_quot_class :> quot_class_of T Q;
+  ring_quot_ring_class :> GRing.Ring.class_of Q;
+  ring_quot_mixin :> ring_quot_mixin_of
+    ring_quot_quot_class ring_quot_ring_class
+}.
+ +
+Structure ringQuotType : Type := RingQuotTypePack {
+  ring_quot_sort :> Type;
+  _ : ring_quot_class_of ring_quot_sort;
+  _ : Type
+}.
+ +
+Implicit Type rqT : ringQuotType.
+ +
+Definition ring_quot_class rqT : ring_quot_class_of rqT :=
+  let: RingQuotTypePack _ cT _ as qT' := rqT return ring_quot_class_of qT' in cT.
+ +
+Definition ring_zmod_quot_class rqT (rqc : ring_quot_class_of rqT) :
+  zmod_quot_class_of eqT zeroT oppT addT rqT := ZmodQuotClass rqc.
+Definition ring_eq_quot_class rqT (rqc : ring_quot_class_of rqT) :
+  eq_quot_class_of eqT rqT := EqQuotClass rqc.
+ +
+Canonical ringQuotType_eqType rqT := Equality.Pack (ring_quot_class rqT) rqT.
+Canonical ringQuotType_choiceType rqT := Choice.Pack (ring_quot_class rqT) rqT.
+Canonical ringQuotType_zmodType rqT :=
+  GRing.Zmodule.Pack (ring_quot_class rqT) rqT.
+Canonical ringQuotType_ringType rqT :=
+  GRing.Ring.Pack (ring_quot_class rqT) rqT.
+Canonical ringQuotType_quotType rqT := QuotTypePack (ring_quot_class rqT) rqT.
+Canonical ringQuotType_eqQuotType rqT :=
+  EqQuotTypePack (ring_eq_quot_class (ring_quot_class rqT)) rqT.
+Canonical ringQuotType_zmodQuotType rqT :=
+  ZmodQuotTypePack (ring_zmod_quot_class (ring_quot_class rqT)) rqT.
+ +
+Coercion ringQuotType_eqType : ringQuotType >-> eqType.
+Coercion ringQuotType_choiceType : ringQuotType >-> choiceType.
+Coercion ringQuotType_zmodType : ringQuotType >-> zmodType.
+Coercion ringQuotType_ringType : ringQuotType >-> ringType.
+Coercion ringQuotType_quotType : ringQuotType >-> quotType.
+Coercion ringQuotType_eqQuotType : ringQuotType >-> eqQuotType.
+Coercion ringQuotType_zmodQuotType : ringQuotType >-> zmodQuotType.
+ +
+Definition RingQuotType_pack Q :=
+  fun (qT : quotType T) (zT : ringType) qc rc
+  of phant_id (quot_class qT) qc & phant_id (GRing.Ring.class zT) rc
+    fun mRingQuotTypePack (@RingQuotClass Q qc rc m) Q.
+ +
+Definition RingQuotMixin_pack Q :=
+  fun (qT : zmodQuotType eqT zeroT oppT addT) ⇒
+  fun (qc : zmod_quot_class_of eqT zeroT oppT addT Q)
+      of phant_id (zmod_quot_class qT) qc
+  fun (rT : ringType) rc of phant_id (GRing.Ring.class rT) rc
+    fun mZ m1 mM ⇒ @RingQuotMixinPack Q qc rc mZ m1 mM.
+ +
+Definition RingQuotType_clone (Q : Type) qT cT
+  of phant_id (ring_quot_class qT) cT := @RingQuotTypePack Q cT Q.
+ +
+Lemma ring_quot_mixinP rqT :
+  ring_quot_mixin_of (ring_quot_class rqT) (ring_quot_class rqT).
+ +
+Lemma pi_oner rqT : \pi_rqT oneT = 1.
+ +
+Lemma pi_mulr rqT : {morph \pi_rqT : x y / mulT x y >-> x × y}.
+ +
+Canonical pi_one_quot_morph rqT := PiMorph (pi_oner rqT).
+Canonical pi_mul_quot_morph rqT := PiMorph2 (pi_mulr rqT).
+ +
+End RingQuot.
+ +
+Notation RingQuotType o mul Q mix :=
+  (@RingQuotType_pack _ _ _ _ _ o mul Q _ _ _ _ id id mix).
+Notation "[ 'ringQuotType' o & m 'of' Q ]" :=
+  (@RingQuotType_clone _ _ _ _ _ o m Q _ _ id)
+  (at level 0, format "[ 'ringQuotType' o & m 'of' Q ]") : form_scope.
+Notation RingQuotMixin Q m1 mM :=
+  (@RingQuotMixin_pack _ _ _ _ _ _ _ Q _ _ id _ _ id (zmod_quot_mixinP _) m1 mM).
+ +
+Section PiRMorphism.
+ +
+Variables (R : ringType) (equivR : rel R) (zeroR : R).
+ +
+Variable Q : @ringQuotType R equivR zeroR -%R +%R 1 *%R.
+ +
+Lemma pi_is_multiplicative : multiplicative \pi_Q.
+ +
+Canonical pi_rmorphism := AddRMorphism pi_is_multiplicative.
+ +
+End PiRMorphism.
+ +
+Section UnitRingQuot.
+ +
+Variable (T : Type).
+Variable eqT : rel T.
+Variables (zeroT : T) (oppT : T T) (addT : T T T).
+Variables (oneT : T) (mulT : T T T).
+Variables (unitT : pred T) (invT : T T).
+ +
+Record unit_ring_quot_mixin_of (Q : Type) (qc : quot_class_of T Q)
+  (rc : GRing.UnitRing.class_of Q) := UnitRingQuotMixinPack {
+    unit_ring_zmod_quot_mixin :>
+        ring_quot_mixin_of eqT zeroT oppT addT oneT mulT qc rc;
+    _ : {mono \pi_(QuotTypePack qc Q) : x /
+         unitT x >-> x \in @GRing.unit (GRing.UnitRing.Pack rc Q)};
+    _ : {morph \pi_(QuotTypePack qc Q) : x /
+         invT x >-> @GRing.inv (GRing.UnitRing.Pack rc Q) x}
+}.
+ +
+Record unit_ring_quot_class_of (Q : Type) : Type := UnitRingQuotClass {
+  unit_ring_quot_quot_class :> quot_class_of T Q;
+  unit_ring_quot_ring_class :> GRing.UnitRing.class_of Q;
+  unit_ring_quot_mixin :> unit_ring_quot_mixin_of
+    unit_ring_quot_quot_class unit_ring_quot_ring_class
+}.
+ +
+Structure unitRingQuotType : Type := UnitRingQuotTypePack {
+  unit_ring_quot_sort :> Type;
+  _ : unit_ring_quot_class_of unit_ring_quot_sort;
+  _ : Type
+}.
+ +
+Implicit Type rqT : unitRingQuotType.
+ +
+Definition unit_ring_quot_class rqT : unit_ring_quot_class_of rqT :=
+  let: UnitRingQuotTypePack _ cT _ as qT' := rqT
+    return unit_ring_quot_class_of qT' in cT.
+ +
+Definition unit_ring_ring_quot_class rqT (rqc : unit_ring_quot_class_of rqT) :
+  ring_quot_class_of eqT zeroT oppT addT oneT mulT rqT := RingQuotClass rqc.
+Definition unit_ring_zmod_quot_class rqT (rqc : unit_ring_quot_class_of rqT) :
+  zmod_quot_class_of eqT zeroT oppT addT rqT := ZmodQuotClass rqc.
+Definition unit_ring_eq_quot_class rqT (rqc : unit_ring_quot_class_of rqT) :
+  eq_quot_class_of eqT rqT := EqQuotClass rqc.
+ +
+Canonical unitRingQuotType_eqType rqT :=
+  Equality.Pack (unit_ring_quot_class rqT) rqT.
+Canonical unitRingQuotType_choiceType rqT :=
+  Choice.Pack (unit_ring_quot_class rqT) rqT.
+Canonical unitRingQuotType_zmodType rqT :=
+  GRing.Zmodule.Pack (unit_ring_quot_class rqT) rqT.
+Canonical unitRingQuotType_ringType rqT :=
+  GRing.Ring.Pack (unit_ring_quot_class rqT) rqT.
+Canonical unitRingQuotType_unitRingType rqT :=
+  GRing.UnitRing.Pack (unit_ring_quot_class rqT) rqT.
+Canonical unitRingQuotType_quotType rqT :=
+  QuotTypePack (unit_ring_quot_class rqT) rqT.
+Canonical unitRingQuotType_eqQuotType rqT :=
+  EqQuotTypePack (unit_ring_eq_quot_class (unit_ring_quot_class rqT)) rqT.
+Canonical unitRingQuotType_zmodQuotType rqT :=
+  ZmodQuotTypePack (unit_ring_zmod_quot_class (unit_ring_quot_class rqT)) rqT.
+Canonical unitRingQuotType_ringQuotType rqT :=
+  RingQuotTypePack (unit_ring_ring_quot_class (unit_ring_quot_class rqT)) rqT.
+ +
+Coercion unitRingQuotType_eqType : unitRingQuotType >-> eqType.
+Coercion unitRingQuotType_choiceType : unitRingQuotType >-> choiceType.
+Coercion unitRingQuotType_zmodType : unitRingQuotType >-> zmodType.
+Coercion unitRingQuotType_ringType : unitRingQuotType >-> ringType.
+Coercion unitRingQuotType_unitRingType : unitRingQuotType >-> unitRingType.
+Coercion unitRingQuotType_quotType : unitRingQuotType >-> quotType.
+Coercion unitRingQuotType_eqQuotType : unitRingQuotType >-> eqQuotType.
+Coercion unitRingQuotType_zmodQuotType : unitRingQuotType >-> zmodQuotType.
+Coercion unitRingQuotType_ringQuotType : unitRingQuotType >-> ringQuotType.
+ +
+Definition UnitRingQuotType_pack Q :=
+  fun (qT : quotType T) (rT : unitRingType) qc rc
+  of phant_id (quot_class qT) qc & phant_id (GRing.UnitRing.class rT) rc
+    fun mUnitRingQuotTypePack (@UnitRingQuotClass Q qc rc m) Q.
+ +
+Definition UnitRingQuotMixin_pack Q :=
+  fun (qT : ringQuotType eqT zeroT oppT addT oneT mulT) ⇒
+  fun (qc : ring_quot_class_of eqT zeroT oppT addT oneT mulT Q)
+      of phant_id (zmod_quot_class qT) qc
+  fun (rT : unitRingType) rc of phant_id (GRing.UnitRing.class rT) rc
+    fun mR mU mV ⇒ @UnitRingQuotMixinPack Q qc rc mR mU mV.
+ +
+Definition UnitRingQuotType_clone (Q : Type) qT cT
+  of phant_id (unit_ring_quot_class qT) cT := @UnitRingQuotTypePack Q cT Q.
+ +
+Lemma unit_ring_quot_mixinP rqT :
+  unit_ring_quot_mixin_of (unit_ring_quot_class rqT) (unit_ring_quot_class rqT).
+ +
+Lemma pi_unitr rqT : {mono \pi_rqT : x / unitT x >-> x \in GRing.unit}.
+ +
+Lemma pi_invr rqT : {morph \pi_rqT : x / invT x >-> x^-1}.
+ +
+Canonical pi_unit_quot_morph rqT := PiMono1 (pi_unitr rqT).
+Canonical pi_inv_quot_morph rqT := PiMorph1 (pi_invr rqT).
+ +
+End UnitRingQuot.
+ +
+Notation UnitRingQuotType u i Q mix :=
+  (@UnitRingQuotType_pack _ _ _ _ _ _ _ u i Q _ _ _ _ id id mix).
+Notation "[ 'unitRingQuotType' u & i 'of' Q ]" :=
+  (@UnitRingQuotType_clone _ _ _ _ _ _ _ u i Q _ _ id)
+  (at level 0, format "[ 'unitRingQuotType' u & i 'of' Q ]") : form_scope.
+Notation UnitRingQuotMixin Q mU mV :=
+  (@UnitRingQuotMixin_pack _ _ _ _ _ _ _ _ _ Q
+    _ _ id _ _ id (zmod_quot_mixinP _) mU mV).
+ +
+Section IdealDef.
+ +
+Definition proper_ideal (R : ringType) (S : predPredType R) : Prop :=
+  1 \notin S a, {in S, u, a × u \in S}.
+ +
+Definition prime_idealr_closed (R : ringType) (S : predPredType R) : Prop :=
+   u v, u × v \in S (u \in S) || (v \in S).
+ +
+Definition idealr_closed (R : ringType) (S : predPredType R) :=
+  [/\ 0 \in S, 1 \notin S & a, {in S &, u v, a × u + v \in S}].
+ +
+Lemma idealr_closed_nontrivial R S : @idealr_closed R S proper_ideal S.
+ +
+Lemma idealr_closedB R S : @idealr_closed R S zmod_closed S.
+ +
+Coercion idealr_closedB : idealr_closed >-> zmod_closed.
+Coercion idealr_closed_nontrivial : idealr_closed >-> proper_ideal.
+ +
+Structure idealr (R : ringType) (S : predPredType R) := MkIdeal {
+  idealr_zmod :> zmodPred S;
+  _ : proper_ideal S
+}.
+ +
+Structure prime_idealr (R : ringType) (S : predPredType R) := MkPrimeIdeal {
+  prime_idealr_zmod :> idealr S;
+  _ : prime_idealr_closed S
+}.
+ +
+Definition Idealr (R : ringType) (I : predPredType R) (zmodI : zmodPred I)
+            (kI : keyed_pred zmodI) : proper_ideal I idealr I.
+ +
+Section IdealTheory.
+Variables (R : ringType) (I : predPredType R)
+          (idealrI : idealr I) (kI : keyed_pred idealrI).
+ +
+Lemma idealr1 : 1 \in kI = false.
+ +
+Lemma idealMr a u : u \in kI a × u \in kI.
+ +
+Lemma idealr0 : 0 \in kI.
+ +
+End IdealTheory.
+ +
+Section PrimeIdealTheory.
+ +
+Variables (R : comRingType) (I : predPredType R)
+          (pidealrI : prime_idealr I) (kI : keyed_pred pidealrI).
+ +
+Lemma prime_idealrM u v : (u × v \in kI) = (u \in kI) || (v \in kI).
+ +
+End PrimeIdealTheory.
+ +
+End IdealDef.
+ +
+Module Quotient.
+Section ZmodQuotient.
+Variables (R : zmodType) (I : predPredType R)
+          (zmodI : zmodPred I) (kI : keyed_pred zmodI).
+ +
+Definition equiv (x y : R) := (x - y) \in kI.
+ +
+Lemma equivE x y : (equiv x y) = (x - y \in kI).
+ +
+Lemma equiv_is_equiv : equiv_class_of equiv.
+ +
+Canonical equiv_equiv := EquivRelPack equiv_is_equiv.
+Canonical equiv_encModRel := defaultEncModRel equiv.
+ +
+Definition type := {eq_quot equiv}.
+Definition type_of of phant R := type.
+ +
+Canonical rquot_quotType := [quotType of type].
+Canonical rquot_eqType := [eqType of type].
+Canonical rquot_choiceType := [choiceType of type].
+Canonical rquot_eqQuotType := [eqQuotType equiv of type].
+ +
+Lemma idealrBE x y : (x - y) \in kI = (x == y %[mod type]).
+ +
+Lemma idealrDE x y : (x + y) \in kI = (x == - y %[mod type]).
+ +
+Definition zero : type := lift_cst type 0.
+Definition add := lift_op2 type +%R.
+Definition opp := lift_op1 type -%R.
+ +
+Canonical pi_zero_morph := PiConst zero.
+ +
+Lemma pi_opp : {morph \pi : x / - x >-> opp x}.
+ +
+Canonical pi_opp_morph := PiMorph1 pi_opp.
+ +
+Lemma pi_add : {morph \pi : x y / x + y >-> add x y}.
+Canonical pi_add_morph := PiMorph2 pi_add.
+ +
+Lemma addqA: associative add.
+ +
+Lemma addqC: commutative add.
+ +
+Lemma add0q: left_id zero add.
+ +
+Lemma addNq: left_inverse zero opp add.
+ +
+Definition rquot_zmodMixin := ZmodMixin addqA addqC add0q addNq.
+Canonical rquot_zmodType := Eval hnf in ZmodType type rquot_zmodMixin.
+ +
+Definition rquot_zmodQuotMixin := ZmodQuotMixin type (lock _) pi_opp pi_add.
+Canonical rquot_zmodQuotType := ZmodQuotType 0 -%R +%R type rquot_zmodQuotMixin.
+ +
+End ZmodQuotient.
+ +
+Notation "{quot I }" := (@type_of _ _ _ I (Phant _)).
+ +
+Section RingQuotient.
+ +
+Variables (R : comRingType) (I : predPredType R)
+          (idealI : idealr I) (kI : keyed_pred idealI).
+ +
+ +
+Definition one: type := lift_cst type 1.
+Definition mul := lift_op2 type *%R.
+ +
+Canonical pi_one_morph := PiConst one.
+ +
+Lemma pi_mul: {morph \pi : x y / x × y >-> mul x y}.
+Canonical pi_mul_morph := PiMorph2 pi_mul.
+ +
+Lemma mulqA: associative mul.
+ +
+Lemma mulqC: commutative mul.
+ +
+Lemma mul1q: left_id one mul.
+ +
+Lemma mulq_addl: left_distributive mul +%R.
+ +
+Lemma nonzero1q: one != 0.
+ +
+Definition rquot_comRingMixin :=
+  ComRingMixin mulqA mulqC mul1q mulq_addl nonzero1q.
+ +
+Canonical rquot_ringType := Eval hnf in RingType type rquot_comRingMixin.
+Canonical rquot_comRingType := Eval hnf in ComRingType type mulqC.
+ +
+Definition rquot_ringQuotMixin := RingQuotMixin type (lock _) pi_mul.
+Canonical rquot_ringQuotType := RingQuotType 1 *%R type rquot_ringQuotMixin.
+ +
+End RingQuotient.
+ +
+Section IDomainQuotient.
+ +
+Variables (R : comRingType) (I : predPredType R)
+          (pidealI : prime_idealr I) (kI : keyed_pred pidealI).
+ +
+Lemma rquot_IdomainAxiom (x y : {quot kI}): x × y = 0 (x == 0) || (y == 0).
+ +
+End IDomainQuotient.
+ +
+End Quotient.
+ +
+Notation "{ideal_quot I }" := (@Quotient.type_of _ _ _ I (Phant _)).
+Notation "x == y %[mod_ideal I ]" :=
+  (x == y %[mod {ideal_quot I}]) : quotient_scope.
+Notation "x = y %[mod_ideal I ]" :=
+  (x = y %[mod {ideal_quot I}]) : quotient_scope.
+Notation "x != y %[mod_ideal I ]" :=
+  (x != y %[mod {ideal_quot I}]) : quotient_scope.
+Notation "x <> y %[mod_ideal I ]" :=
+  (x y %[mod {ideal_quot I}]) : quotient_scope.
+ +
+Canonical Quotient.rquot_eqType.
+Canonical Quotient.rquot_choiceType.
+Canonical Quotient.rquot_zmodType.
+Canonical Quotient.rquot_ringType.
+Canonical Quotient.rquot_comRingType.
+Canonical Quotient.rquot_quotType.
+Canonical Quotient.rquot_eqQuotType.
+Canonical Quotient.rquot_zmodQuotType.
+Canonical Quotient.rquot_ringQuotType.
+
+
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3