From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.algebra.polydiv.html | 2054 ++++++++++++++++++++++++++++ 1 file changed, 2054 insertions(+) create mode 100644 docs/htmldoc/mathcomp.algebra.polydiv.html (limited to 'docs/htmldoc/mathcomp.algebra.polydiv.html') diff --git a/docs/htmldoc/mathcomp.algebra.polydiv.html b/docs/htmldoc/mathcomp.algebra.polydiv.html new file mode 100644 index 0000000..e130606 --- /dev/null +++ b/docs/htmldoc/mathcomp.algebra.polydiv.html @@ -0,0 +1,2054 @@ + + + + + +mathcomp.algebra.polydiv + + + + +
+ + + +
+ +

Library mathcomp.algebra.polydiv

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ This file provides a library for the basic theory of Euclidean and pseudo- + Euclidean division for polynomials over ring structures. + The library defines two versions of the pseudo-euclidean division: one for + coefficients in a (not necessarily commutative) ring structure and one for + coefficients equipped with a structure of integral domain. From the latter + we derive the definition of the usual Euclidean division for coefficients + in a field. Only the definition of the pseudo-division for coefficients in + an integral domain is exported by default and benefits from notations. + Also, the only theory exported by default is the one of division for + polynomials with coefficients in a field. + Other definitions and facts are qualified using name spaces indicating the + hypotheses made on the structure of coefficients and the properties of the + polynomial one divides with. + +
+ + Pdiv.Field (exported by the present library): + edivp p q == pseudo-division of p by q with p q : {poly R} where + R is an idomainType. + Computes (k, quo, rem) : nat * {poly r} * {poly R}, + such that size rem < size q and: + + if lead_coef q is not a unit, then: + (lead_coef q ^+ k) *: p = q * quo + rem + + else if lead_coef q is a unit, then: + p = q * quo + rem and k = 0 + p %/ q == quotient (second component) computed by (edivp p q). + p %% q == remainder (third component) computed by (edivp p q). + scalp p q == exponent (first component) computed by (edivp p q). + p %| q == tests the nullity of the remainder of the + pseudo-division of p by q. + rgcdp p q == Pseudo-greater common divisor obtained by performing + the Euclidean algorithm on p and q using redivp as + Euclidean division. + p %= q == p and q are associate polynomials, i.e., p %| q and + q %| p, or equivalently, p = c *: q for some nonzero + constant c. + gcdp p q == Pseudo-greater common divisor obtained by performing + the Euclidean algorithm on p and q using edivp as + Euclidean division. + egcdp p q == The pair of Bezout coefficients: if e := egcdp p q, + then size e.1 <= size q, size e.2 <= size p, and + gcdp p q %= e.1 * p + e.2 * q + coprimep p q == p and q are coprime, i.e., (gcdp p q) is a nonzero + constant. + gdcop q p == greatest divisor of p which is coprime to q. + irreducible_poly p <-> p has only trivial (constant) divisors. + +
+ + Pdiv.Idomain: theory available for edivp and the related operation under + the sole assumption that the ring of coefficients is canonically an + integral domain (R : idomainType). + +
+ + Pdiv.IdomainMonic: theory available for edivp and the related operations + under the assumption that the ring of coefficients is canonically + and integral domain (R : idomainType) an the divisor is monic. + +
+ + Pdiv.IdomainUnit: theory available for edivp and the related operations + under the assumption that the ring of coefficients is canonically an + integral domain (R : idomainType) and the leading coefficient of the + divisor is a unit. + +
+ + Pdiv.ClosedField: theory available for edivp and the related operation + under the sole assumption that the ring of coefficients is canonically + an algebraically closed field (R : closedField). + +
+ + Pdiv.Ring : + redivp p q == pseudo-division of p by q with p q : {poly R} where R is + a ringType. + Computes (k, quo, rem) : nat * {poly r} * {poly R}, + such that if rem = 0 then quo * q = p * (lead_coef q ^+ k) + +
+ + rdivp p q == quotient (second component) computed by (redivp p q). + rmodp p q == remainder (third component) computed by (redivp p q). + rscalp p q == exponent (first component) computed by (redivp p q). + rdvdp p q == tests the nullity of the remainder of the pseudo-division + of p by q. + rgcdp p q == analogue of gcdp for coefficients in a ringType. + rgdcop p q == analogue of gdcop for coefficients in a ringType. +rcoprimep p q == analogue of coprimep p q for coefficients in a ringType. + +
+ + Pdiv.RingComRreg : theory of the operations defined in Pdiv.Ring, when the + ring of coefficients is canonically commutative (R : comRingType) and + the leading coefficient of the divisor is both right regular and + commutes as a constant polynomial with the divisor itself + +
+ + Pdiv.RingMonic : theory of the operations defined in Pdiv.Ring, under the + assumption that the divisor is monic. + +
+ + Pdiv.UnitRing: theory of the operations defined in Pdiv.Ring, when the + ring R of coefficients is canonically with units (R : unitRingType). + +
+
+ +
+Set Implicit Arguments.
+ +
+Import GRing.Theory.
+Local Open Scope ring_scope.
+ +
+Reserved Notation "p %= q" (at level 70, no associativity).
+ +
+ +
+Module Pdiv.
+ +
+Module CommonRing.
+ +
+Section RingPseudoDivision.
+ +
+Variable R : ringType.
+Implicit Types d p q r : {poly R}.
+ +
+
+ +
+ Pseudo division, defined on an arbitrary ring +
+
+Definition redivp_rec (q : {poly R}) :=
+  let sq := size q in
+  let cq := lead_coef q in
+   fix loop (k : nat) (qq r : {poly R})(n : nat) {struct n} :=
+    if size r < sq then (k, qq, r) else
+    let m := (lead_coef r) *: 'X^(size r - sq) in
+    let qq1 := qq × cq%:P + m in
+    let r1 := r × cq%:P - m × q in
+       if n is n1.+1 then loop k.+1 qq1 r1 n1 else (k.+1, qq1, r1).
+ +
+Definition redivp_expanded_def p q :=
+   if q == 0 then (0%N, 0, p) else redivp_rec q 0 0 p (size p).
+Fact redivp_key : unit.
+Definition redivp : {poly R} {poly R} nat × {poly R} × {poly R} :=
+  locked_with redivp_key redivp_expanded_def.
+Canonical redivp_unlockable := [unlockable fun redivp].
+ +
+Definition rdivp p q := ((redivp p q).1).2.
+Definition rmodp p q := (redivp p q).2.
+Definition rscalp p q := ((redivp p q).1).1.
+Definition rdvdp p q := rmodp q p == 0.
+
+ +
+Definition rmultp := [rel m d | rdvdp d m]. +
+
+Lemma redivp_def p q : redivp p q = (rscalp p q, rdivp p q, rmodp p q).
+ +
+Lemma rdiv0p p : rdivp 0 p = 0.
+ +
+Lemma rdivp0 p : rdivp p 0 = 0.
+ +
+Lemma rdivp_small p q : size p < size q rdivp p q = 0.
+ +
+Lemma leq_rdivp p q : size (rdivp p q) size p.
+ +
+Lemma rmod0p p : rmodp 0 p = 0.
+ +
+Lemma rmodp0 p : rmodp p 0 = p.
+ +
+Lemma rscalp_small p q : size p < size q rscalp p q = 0%N.
+ +
+Lemma ltn_rmodp p q : (size (rmodp p q) < size q) = (q != 0).
+ +
+Lemma ltn_rmodpN0 p q : q != 0 size (rmodp p q) < size q.
+ +
+Lemma rmodp1 p : rmodp p 1 = 0.
+ +
+Lemma rmodp_small p q : size p < size q rmodp p q = p.
+ +
+Lemma leq_rmodp m d : size (rmodp m d) size m.
+ +
+Lemma rmodpC p c : c != 0 rmodp p c%:P = 0.
+ +
+Lemma rdvdp0 d : rdvdp d 0.
+ +
+Lemma rdvd0p n : (rdvdp 0 n) = (n == 0).
+ +
+Lemma rdvd0pP n : reflect (n = 0) (rdvdp 0 n).
+ +
+Lemma rdvdpN0 p q : rdvdp p q q != 0 p != 0.
+ +
+Lemma rdvdp1 d : (rdvdp d 1) = ((size d) == 1%N).
+ +
+Lemma rdvd1p m : rdvdp 1 m.
+ +
+Lemma Nrdvdp_small (n d : {poly R}) :
+  n != 0 size n < size d (rdvdp d n) = false.
+ +
+Lemma rmodp_eq0P p q : reflect (rmodp p q = 0) (rdvdp q p).
+ +
+Lemma rmodp_eq0 p q : rdvdp q p rmodp p q = 0.
+ +
+Lemma rdvdp_leq p q : rdvdp p q q != 0 size p size q.
+ +
+Definition rgcdp p q :=
+  let: (p1, q1) := if size p < size q then (q, p) else (p, q) in
+  if p1 == 0 then q1 else
+  let fix loop (n : nat) (pp qq : {poly R}) {struct n} :=
+      let rr := rmodp pp qq in
+      if rr == 0 then qq else
+      if n is n1.+1 then loop n1 qq rr else rr in
+  loop (size p1) p1 q1.
+ +
+Lemma rgcd0p : left_id 0 rgcdp.
+ +
+Lemma rgcdp0 : right_id 0 rgcdp.
+ +
+Lemma rgcdpE p q :
+  rgcdp p q = if size p < size q
+    then rgcdp (rmodp q p) p else rgcdp (rmodp p q) q.
+ +
+CoInductive comm_redivp_spec m d : nat × {poly R} × {poly R} Type :=
+  ComEdivnSpec k (q r : {poly R}) of
+   (GRing.comm d (lead_coef d)%:P m × (lead_coef d ^+ k)%:P = q × d + r) &
+   (d != 0 size r < size d) : comm_redivp_spec m d (k, q, r).
+ +
+Lemma comm_redivpP m d : comm_redivp_spec m d (redivp m d).
+ +
+Lemma rmodpp p : GRing.comm p (lead_coef p)%:P rmodp p p = 0.
+ +
+Definition rcoprimep (p q : {poly R}) := size (rgcdp p q) == 1%N.
+ +
+Fixpoint rgdcop_rec q p n :=
+  if n is m.+1 then
+      if rcoprimep p q then p
+        else rgdcop_rec q (rdivp p (rgcdp p q)) m
+    else (q == 0)%:R.
+ +
+Definition rgdcop q p := rgdcop_rec q p (size p).
+ +
+Lemma rgdcop0 q : rgdcop q 0 = (q == 0)%:R.
+ +
+End RingPseudoDivision.
+ +
+End CommonRing.
+ +
+Module RingComRreg.
+ +
+Import CommonRing.
+ +
+Section ComRegDivisor.
+ +
+Variable R : ringType.
+Variable d : {poly R}.
+Hypothesis Cdl : GRing.comm d (lead_coef d)%:P.
+Hypothesis Rreg : GRing.rreg (lead_coef d).
+ +
+Implicit Types p q r : {poly R}.
+ +
+Lemma redivp_eq q r :
+    size r < size d
+    let k := (redivp (q × d + r) d).1.1 in
+    let c := (lead_coef d ^+ k)%:P in
+  redivp (q × d + r) d = (k, q × c, r × c).
+ +
+
+ +
+ this is a bad name +
+
+Lemma rdivp_eq p :
+  p × (lead_coef d ^+ (rscalp p d))%:P = (rdivp p d) × d + (rmodp p d).
+ +
+
+ +
+ section variables impose an inconvenient order on parameters +
+
+Lemma eq_rdvdp k q1 p:
+  p × ((lead_coef d)^+ k)%:P = q1 × d rdvdp d p.
+ +
+CoInductive rdvdp_spec p q : {poly R} bool Type :=
+  | Rdvdp k q1 & p × ((lead_coef q)^+ k)%:P = q1 × q : rdvdp_spec p q 0 true
+  | RdvdpN & rmodp p q != 0 : rdvdp_spec p q (rmodp p q) false.
+ +
+
+ +
+ Is that version useable ? +
+
+ +
+Lemma rdvdp_eqP p : rdvdp_spec p d (rmodp p d) (rdvdp d p).
+ +
+Lemma rdvdp_mull p : rdvdp d (p × d).
+ +
+Lemma rmodp_mull p : rmodp (p × d) d = 0.
+ +
+Lemma rmodpp : rmodp d d = 0.
+ +
+Lemma rdivpp : rdivp d d = (lead_coef d ^+ rscalp d d)%:P.
+ +
+Lemma rdvdpp : rdvdp d d.
+ +
+Lemma rdivpK p : rdvdp d p
+  (rdivp p d) × d = p × (lead_coef d ^+ rscalp p d)%:P.
+ +
+End ComRegDivisor.
+ +
+End RingComRreg.
+ +
+Module RingMonic.
+ +
+Import CommonRing.
+ +
+Import RingComRreg.
+ +
+Section MonicDivisor.
+ +
+Variable R : ringType.
+Implicit Types p q r : {poly R}.
+ +
+Variable d : {poly R}.
+Hypothesis mond : d \is monic.
+ +
+Lemma redivp_eq q r : size r < size d
+  let k := (redivp (q × d + r) d).1.1 in
+  redivp (q × d + r) d = (k, q, r).
+ +
+Lemma rdivp_eq p :
+  p = (rdivp p d) × d + (rmodp p d).
+ +
+Lemma rdivpp : rdivp d d = 1.
+ +
+Lemma rdivp_addl_mul_small q r :
+  size r < size d rdivp (q × d + r) d = q.
+ +
+Lemma rdivp_addl_mul q r : rdivp (q × d + r) d = q + rdivp r d.
+ +
+Lemma rdivp_addl q r :
+  rdvdp d q rdivp (q + r) d = rdivp q d + rdivp r d.
+ +
+Lemma rdivp_addr q r :
+  rdvdp d r rdivp (q + r) d = rdivp q d + rdivp r d.
+ +
+Lemma rdivp_mull p : rdivp (p × d) d = p.
+ +
+Lemma rmodp_mull p : rmodp (p × d) d = 0.
+ +
+Lemma rmodpp : rmodp d d = 0.
+ +
+Lemma rmodp_addl_mul_small q r :
+  size r < size d rmodp (q × d + r) d = r.
+ +
+Lemma rmodp_add p q : rmodp (p + q) d = rmodp p d + rmodp q d.
+ +
+Lemma rmodp_mulmr p q : rmodp (p × (rmodp q d)) d = rmodp (p × q) d.
+ +
+Lemma rdvdpp : rdvdp d d.
+ +
+
+ +
+ section variables impose an inconvenient order on parameters +
+
+Lemma eq_rdvdp q1 p : p = q1 × d rdvdp d p.
+ +
+Lemma rdvdp_mull p : rdvdp d (p × d).
+ +
+Lemma rdvdpP p : reflect ( qq, p = qq × d) (rdvdp d p).
+ +
+Lemma rdivpK p : rdvdp d p (rdivp p d) × d = p.
+ +
+End MonicDivisor.
+End RingMonic.
+ +
+Module Ring.
+ +
+Include CommonRing.
+Import RingMonic.
+ +
+Section ExtraMonicDivisor.
+ +
+Variable R : ringType.
+ +
+Implicit Types d p q r : {poly R}.
+ +
+Lemma rdivp1 p : rdivp p 1 = p.
+ +
+Lemma rdvdp_XsubCl p x : rdvdp ('X - x%:P) p = root p x.
+ +
+Lemma polyXsubCP p x : reflect (p.[x] = 0) (rdvdp ('X - x%:P) p).
+ +
+Lemma root_factor_theorem p x : root p x = (rdvdp ('X - x%:P) p).
+ +
+End ExtraMonicDivisor.
+ +
+End Ring.
+ +
+Module ComRing.
+ +
+Import Ring.
+ +
+Import RingComRreg.
+ +
+Section CommutativeRingPseudoDivision.
+ +
+Variable R : comRingType.
+ +
+Implicit Types d p q m n r : {poly R}.
+ +
+CoInductive redivp_spec (m d : {poly R}) : nat × {poly R} × {poly R} Type :=
+  EdivnSpec k (q r: {poly R}) of
+    (lead_coef d ^+ k) *: m = q × d + r &
+   (d != 0 size r < size d) : redivp_spec m d (k, q, r).
+ +
+Lemma redivpP m d : redivp_spec m d (redivp m d).
+ +
+Lemma rdivp_eq d p :
+  (lead_coef d ^+ (rscalp p d)) *: p = (rdivp p d) × d + (rmodp p d).
+ +
+Lemma rdvdp_eqP d p : rdvdp_spec p d (rmodp p d) (rdvdp d p).
+ +
+Lemma rdvdp_eq q p :
+  (rdvdp q p) = ((lead_coef q) ^+ (rscalp p q) *: p == (rdivp p q) × q).
+ +
+End CommutativeRingPseudoDivision.
+ +
+End ComRing.
+ +
+Module UnitRing.
+ +
+Import Ring.
+ +
+Section UnitRingPseudoDivision.
+ +
+Variable R : unitRingType.
+Implicit Type p q r d : {poly R}.
+ +
+Lemma uniq_roots_rdvdp p rs :
+  all (root p) rs uniq_roots rs
+  rdvdp (\prod_(z <- rs) ('X - z%:P)) p.
+ +
+End UnitRingPseudoDivision.
+ +
+End UnitRing.
+ +
+Module IdomainDefs.
+ +
+Import Ring.
+ +
+Section IDomainPseudoDivisionDefs.
+ +
+Variable R : idomainType.
+Implicit Type p q r d : {poly R}.
+ +
+Definition edivp_expanded_def p q :=
+  let: (k, d, r) as edvpq := redivp p q in
+  if lead_coef q \in GRing.unit then
+    (0%N, (lead_coef q)^-k *: d, (lead_coef q)^-k *: r)
+  else edvpq.
+Fact edivp_key : unit.
+Definition edivp := locked_with edivp_key edivp_expanded_def.
+Canonical edivp_unlockable := [unlockable fun edivp].
+ +
+Definition divp p q := ((edivp p q).1).2.
+Definition modp p q := (edivp p q).2.
+Definition scalp p q := ((edivp p q).1).1.
+Definition dvdp p q := modp q p == 0.
+Definition eqp p q := (dvdp p q) && (dvdp q p).
+ +
+End IDomainPseudoDivisionDefs.
+ +
+Notation "m %/ d" := (divp m d) : ring_scope.
+Notation "m %% d" := (modp m d) : ring_scope.
+Notation "p %| q" := (dvdp p q) : ring_scope.
+Notation "p %= q" := (eqp p q) : ring_scope.
+End IdomainDefs.
+ +
+Module WeakIdomain.
+ +
+Import Ring ComRing UnitRing IdomainDefs.
+ +
+Section WeakTheoryForIDomainPseudoDivision.
+ +
+Variable R : idomainType.
+Implicit Type p q r d : {poly R}.
+ +
+Lemma edivp_def p q : edivp p q = (scalp p q, divp p q, modp p q).
+ +
+Lemma edivp_redivp p q : (lead_coef q \in GRing.unit) = false
+  edivp p q = redivp p q.
+ +
+Lemma divpE p q :
+  p %/ q = if lead_coef q \in GRing.unit
+    then (lead_coef q)^-(rscalp p q) *: (rdivp p q)
+    else rdivp p q.
+ +
+Lemma modpE p q :
+  p %% q = if lead_coef q \in GRing.unit
+    then (lead_coef q)^-(rscalp p q) *: (rmodp p q)
+    else rmodp p q.
+ +
+Lemma scalpE p q :
+  scalp p q = if lead_coef q \in GRing.unit then 0%N else rscalp p q.
+ +
+Lemma dvdpE p q : p %| q = rdvdp p q.
+ +
+Lemma lc_expn_scalp_neq0 p q : lead_coef q ^+ scalp p q != 0.
+ +
+Hint Resolve lc_expn_scalp_neq0.
+ +
+CoInductive edivp_spec (m d : {poly R}) :
+                                     nat × {poly R} × {poly R} bool Type :=
+|Redivp_spec k (q r: {poly R}) of
+  (lead_coef d ^+ k) *: m = q × d + r & lead_coef d \notin GRing.unit &
+  (d != 0 size r < size d) : edivp_spec m d (k, q, r) false
+|Fedivp_spec (q r: {poly R}) of m = q × d + r & (lead_coef d \in GRing.unit) &
+  (d != 0 size r < size d) : edivp_spec m d (0%N, q, r) true.
+ +
+
+ +
+ There are several ways to state this fact. The most appropriate statement + might be polished in light of usage. +
+
+Lemma edivpP m d : edivp_spec m d (edivp m d) (lead_coef d \in GRing.unit).
+ +
+Lemma edivp_eq d q r : size r < size d lead_coef d \in GRing.unit
+  edivp (q × d + r) d = (0%N, q, r).
+ +
+Lemma divp_eq p q :
+    (lead_coef q ^+ (scalp p q)) *: p = (p %/ q) × q + (p %% q).
+ +
+Lemma dvdp_eq q p :
+  (q %| p) = ((lead_coef q) ^+ (scalp p q) *: p == (p %/ q) × q).
+ +
+Lemma divpK d p : d %| p p %/ d × d = ((lead_coef d) ^+ (scalp p d)) *: p.
+ +
+Lemma divpKC d p : d %| p d × (p %/ d) = ((lead_coef d) ^+ (scalp p d)) *: p.
+ +
+Lemma dvdpP q p :
+  reflect (exists2 cqq, cqq.1 != 0 & cqq.1 *: p = cqq.2 × q) (q %| p).
+ +
+Lemma mulpK p q : q != 0
+  p × q %/ q = lead_coef q ^+ scalp (p × q) q *: p.
+ +
+Lemma mulKp p q : q != 0
+  q × p %/ q = lead_coef q ^+ scalp (p × q) q *: p.
+ +
+Lemma divpp p : p != 0 p %/ p = (lead_coef p ^+ scalp p p)%:P.
+ +
+End WeakTheoryForIDomainPseudoDivision.
+ +
+Hint Resolve lc_expn_scalp_neq0.
+ +
+End WeakIdomain.
+ +
+Module CommonIdomain.
+ +
+Import Ring ComRing UnitRing IdomainDefs WeakIdomain.
+ +
+Section IDomainPseudoDivision.
+ +
+Variable R : idomainType.
+Implicit Type p q r d m n : {poly R}.
+ +
+Lemma scalp0 p : scalp p 0 = 0%N.
+ +
+Lemma divp_small p q : size p < size q p %/ q = 0.
+ +
+Lemma leq_divp p q : (size (p %/ q) size p).
+ +
+Lemma div0p p : 0 %/ p = 0.
+ +
+Lemma divp0 p : p %/ 0 = 0.
+ +
+Lemma divp1 m : m %/ 1 = m.
+ +
+Lemma modp0 p : p %% 0 = p.
+ +
+Lemma mod0p p : 0 %% p = 0.
+ +
+Lemma modp1 p : p %% 1 = 0.
+ +
+Hint Resolve divp0 divp1 mod0p modp0 modp1.
+ +
+Lemma modp_small p q : size p < size q p %% q = p.
+ +
+Lemma modpC p c : c != 0 p %% c%:P = 0.
+ +
+Lemma modp_mull p q : (p × q) %% q = 0.
+ +
+Lemma modp_mulr d p : (d × p) %% d = 0.
+ +
+Lemma modpp d : d %% d = 0.
+ +
+Lemma ltn_modp p q : (size (p %% q) < size q) = (q != 0).
+ +
+Lemma ltn_divpl d q p : d != 0
+   (size (q %/ d) < size p) = (size q < size (p × d)).
+ +
+Lemma leq_divpr d p q : d != 0
+   (size p size (q %/ d)) = (size (p × d) size q).
+ +
+Lemma divpN0 d p : d != 0 (p %/ d != 0) = (size d size p).
+ +
+Lemma size_divp p q : q != 0 size (p %/ q) = ((size p) - (size q).-1)%N.
+ +
+Lemma ltn_modpN0 p q : q != 0 size (p %% q) < size q.
+ +
+Lemma modp_mod p q : (p %% q) %% q = p %% q.
+ +
+Lemma leq_modp m d : size (m %% d) size m.
+ +
+Lemma dvdp0 d : d %| 0.
+ +
+Hint Resolve dvdp0.
+ +
+Lemma dvd0p p : (0 %| p) = (p == 0).
+ +
+Lemma dvd0pP p : reflect (p = 0) (0 %| p).
+ +
+Lemma dvdpN0 p q : p %| q q != 0 p != 0.
+ +
+Lemma dvdp1 d : (d %| 1) = ((size d) == 1%N).
+ +
+Lemma dvd1p m : 1 %| m.
+ +
+Lemma gtNdvdp p q : p != 0 size p < size q (q %| p) = false.
+ +
+Lemma modp_eq0P p q : reflect (p %% q = 0) (q %| p).
+ +
+Lemma modp_eq0 p q : (q %| p) p %% q = 0.
+ +
+Lemma leq_divpl d p q :
+  d %| p (size (p %/ d) size q) = (size p size (q × d)).
+ +
+Lemma dvdp_leq p q : q != 0 p %| q size p size q.
+ +
+Lemma eq_dvdp c quo q p : c != 0 c *: p = quo × q q %| p.
+ +
+Lemma dvdpp d : d %| d.
+ +
+Hint Resolve dvdpp.
+ +
+Lemma divp_dvd p q : (p %| q) ((q %/ p) %| q).
+ +
+Lemma dvdp_mull m d n : d %| n d %| m × n.
+ +
+Lemma dvdp_mulr n d m : d %| m d %| m × n.
+ +
+Hint Resolve dvdp_mull dvdp_mulr.
+ +
+Lemma dvdp_mul d1 d2 m1 m2 : d1 %| m1 d2 %| m2 d1 × d2 %| m1 × m2.
+ +
+Lemma dvdp_addr m d n : d %| m (d %| m + n) = (d %| n).
+ +
+Lemma dvdp_addl n d m : d %| n (d %| m + n) = (d %| m).
+ +
+Lemma dvdp_add d m n : d %| m d %| n d %| m + n.
+ +
+Lemma dvdp_add_eq d m n : d %| m + n (d %| m) = (d %| n).
+ +
+Lemma dvdp_subr d m n : d %| m (d %| m - n) = (d %| n).
+ +
+Lemma dvdp_subl d m n : d %| n (d %| m - n) = (d %| m).
+ +
+Lemma dvdp_sub d m n : d %| m d %| n d %| m - n.
+ +
+Lemma dvdp_mod d n m : d %| n (d %| m) = (d %| m %% n).
+ +
+Lemma dvdp_trans : transitive (@dvdp R).
+ +
+Lemma dvdp_mulIl p q : p %| p × q.
+ +
+Lemma dvdp_mulIr p q : q %| p × q.
+ +
+Lemma dvdp_mul2r r p q : r != 0 (p × r %| q × r) = (p %| q).
+ +
+Lemma dvdp_mul2l r p q: r != 0 (r × p %| r × q) = (p %| q).
+ +
+Lemma ltn_divpr d p q :
+  d %| q (size p < size (q %/ d)) = (size (p × d) < size q).
+ +
+Lemma dvdp_exp d k p : 0 < k d %| p d %| (p ^+ k).
+ +
+Lemma dvdp_exp2l d k l : k l d ^+ k %| d ^+ l.
+ +
+Lemma dvdp_Pexp2l d k l : 1 < size d (d ^+ k %| d ^+ l) = (k l).
+ +
+Lemma dvdp_exp2r p q k : p %| q p ^+ k %| q ^+ k.
+ +
+Lemma dvdp_exp_sub p q k l: p != 0
+  (p ^+ k %| q × p ^+ l) = (p ^+ (k - l) %| q).
+ +
+Lemma dvdp_XsubCl p x : ('X - x%:P) %| p = root p x.
+ +
+Lemma polyXsubCP p x : reflect (p.[x] = 0) (('X - x%:P) %| p).
+ +
+Lemma eqp_div_XsubC p c :
+  (p == (p %/ ('X - c%:P)) × ('X - c%:P)) = ('X - c%:P %| p).
+ +
+Lemma root_factor_theorem p x : root p x = (('X - x%:P) %| p).
+ +
+Lemma uniq_roots_dvdp p rs : all (root p) rs uniq_roots rs
+  (\prod_(z <- rs) ('X - z%:P)) %| p.
+ +
+Lemma root_bigmul : x (ps : seq {poly R}),
+  ~~root (\big[*%R/1]_(p <- ps) p) x = all (fun p~~ root p x) ps.
+ +
+Lemma eqpP m n :
+  reflect (exists2 c12, (c12.1 != 0) && (c12.2 != 0) & c12.1 *: m = c12.2 *: n)
+          (m %= n).
+ +
+Lemma eqp_eq p q: p %= q (lead_coef q) *: p = (lead_coef p) *: q.
+ +
+Lemma eqpxx : reflexive (@eqp R).
+ +
+Hint Resolve eqpxx.
+ +
+Lemma eqp_sym : symmetric (@eqp R).
+ +
+Lemma eqp_trans : transitive (@eqp R).
+ +
+Lemma eqp_ltrans : left_transitive (@eqp R).
+ +
+Lemma eqp_rtrans : right_transitive (@eqp R).
+ +
+Lemma eqp0 : p, (p %= 0) = (p == 0).
+ +
+Lemma eqp01 : 0 %= (1 : {poly R}) = false.
+ +
+Lemma eqp_scale p c : c != 0 c *: p %= p.
+ +
+Lemma eqp_size p q : p %= q size p = size q.
+ +
+Lemma size_poly_eq1 p : (size p == 1%N) = (p %= 1).
+ +
+Lemma polyXsubC_eqp1 (x : R) : ('X - x%:P %= 1) = false.
+ +
+Lemma dvdp_eqp1 p q : p %| q q %= 1 p %= 1.
+ +
+Lemma eqp_dvdr q p d: p %= q d %| p = (d %| q).
+ +
+Lemma eqp_dvdl d2 d1 p : d1 %= d2 d1 %| p = (d2 %| p).
+ +
+Lemma dvdp_scaler c m n : c != 0 m %| c *: n = (m %| n).
+ +
+Lemma dvdp_scalel c m n : c != 0 (c *: m %| n) = (m %| n).
+ +
+Lemma dvdp_opp d p : d %| (- p) = (d %| p).
+ +
+Lemma eqp_mul2r r p q : r != 0 (p × r %= q × r) = (p %= q).
+ +
+Lemma eqp_mul2l r p q: r != 0 (r × p %= r × q) = (p %= q).
+ +
+Lemma eqp_mull r p q: (q %= r) (p × q %= p × r).
+ +
+Lemma eqp_mulr q p r : (p %= q) (p × r %= q × r).
+ +
+Lemma eqp_exp p q k : p %= q p ^+ k %= q ^+ k.
+ +
+Lemma polyC_eqp1 (c : R) : (c%:P %= 1) = (c != 0).
+ +
+Lemma dvdUp d p: d %= 1 d %| p.
+ +
+Lemma dvdp_size_eqp p q : p %| q size p == size q = (p %= q).
+ +
+Lemma eqp_root p q : p %= q root p =1 root q.
+ +
+Lemma eqp_rmod_mod p q : rmodp p q %= modp p q.
+ +
+Lemma eqp_rdiv_div p q : rdivp p q %= divp p q.
+ +
+Lemma dvd_eqp_divl d p q (dvd_dp : d %| q) (eq_pq : p %= q) :
+  p %/ d %= q %/ d.
+ +
+Definition gcdp_rec p q :=
+  let: (p1, q1) := if size p < size q then (q, p) else (p, q) in
+  if p1 == 0 then q1 else
+  let fix loop (n : nat) (pp qq : {poly R}) {struct n} :=
+      let rr := modp pp qq in
+      if rr == 0 then qq else
+      if n is n1.+1 then loop n1 qq rr else rr in
+  loop (size p1) p1 q1.
+ +
+Definition gcdp := nosimpl gcdp_rec.
+ +
+Lemma gcd0p : left_id 0 gcdp.
+ +
+Lemma gcdp0 : right_id 0 gcdp.
+ +
+Lemma gcdpE p q :
+  gcdp p q = if size p < size q
+    then gcdp (modp q p) p else gcdp (modp p q) q.
+ +
+Lemma size_gcd1p p : size (gcdp 1 p) = 1%N.
+ +
+Lemma size_gcdp1 p : size (gcdp p 1) = 1%N.
+ +
+Lemma gcdpp : idempotent gcdp.
+ +
+Lemma dvdp_gcdlr p q : (gcdp p q %| p) && (gcdp p q %| q).
+ +
+Lemma dvdp_gcdl p q : gcdp p q %| p.
+ +
+Lemma dvdp_gcdr p q :gcdp p q %| q.
+ +
+Lemma leq_gcdpl p q : p != 0 size (gcdp p q) size p.
+ +
+Lemma leq_gcdpr p q : q != 0 size (gcdp p q) size q.
+ +
+Lemma dvdp_gcd p m n : p %| gcdp m n = (p %| m) && (p %| n).
+ +
+Lemma gcdpC : p q, gcdp p q %= gcdp q p.
+ +
+Lemma gcd1p p : gcdp 1 p %= 1.
+ +
+Lemma gcdp1 p : gcdp p 1 %= 1.
+ +
+Lemma gcdp_addl_mul p q r: gcdp r (p × r + q) %= gcdp r q.
+ +
+Lemma gcdp_addl m n : gcdp m (m + n) %= gcdp m n.
+ +
+Lemma gcdp_addr m n : gcdp m (n + m) %= gcdp m n.
+ +
+Lemma gcdp_mull m n : gcdp n (m × n) %= n.
+ +
+Lemma gcdp_mulr m n : gcdp n (n × m) %= n.
+ +
+Lemma gcdp_scalel c m n : c != 0 gcdp (c *: m) n %= gcdp m n.
+ +
+Lemma gcdp_scaler c m n : c != 0 gcdp m (c *: n) %= gcdp m n.
+ +
+Lemma dvdp_gcd_idl m n : m %| n gcdp m n %= m.
+ +
+Lemma dvdp_gcd_idr m n : n %| m gcdp m n %= n.
+ +
+Lemma gcdp_exp p k l : gcdp (p ^+ k) (p ^+ l) %= p ^+ minn k l.
+ +
+Lemma gcdp_eq0 p q : gcdp p q == 0 = (p == 0) && (q == 0).
+ +
+Lemma eqp_gcdr p q r : q %= r gcdp p q %= gcdp p r.
+ +
+Lemma eqp_gcdl r p q : p %= q gcdp p r %= gcdp q r.
+ +
+Lemma eqp_gcd p1 p2 q1 q2 : p1 %= p2 q1 %= q2 gcdp p1 q1 %= gcdp p2 q2.
+ +
+Lemma eqp_rgcd_gcd p q : rgcdp p q %= gcdp p q.
+ +
+Lemma gcdp_modr m n : gcdp m (n %% m) %= gcdp m n.
+ +
+Lemma gcdp_modl m n : gcdp (m %% n) n %= gcdp m n.
+ +
+Lemma gcdp_def d m n :
+    d %| m d %| n ( d', d' %| m d' %| n d' %| d)
+  gcdp m n %= d.
+ +
+Definition coprimep p q := size (gcdp p q) == 1%N.
+ +
+Lemma coprimep_size_gcd p q : coprimep p q size (gcdp p q) = 1%N.
+ +
+Lemma coprimep_def p q : (coprimep p q) = (size (gcdp p q) == 1%N).
+ +
+Lemma coprimep_scalel c m n :
+  c != 0 coprimep (c *: m) n = coprimep m n.
+ +
+Lemma coprimep_scaler c m n:
+  c != 0 coprimep m (c *: n) = coprimep m n.
+ +
+Lemma coprimepp p : coprimep p p = (size p == 1%N).
+ +
+Lemma gcdp_eqp1 p q : gcdp p q %= 1 = (coprimep p q).
+ +
+Lemma coprimep_sym p q : coprimep p q = coprimep q p.
+ +
+Lemma coprime1p p : coprimep 1 p.
+ +
+Lemma coprimep1 p : coprimep p 1.
+ +
+Lemma coprimep0 p : coprimep p 0 = (p %= 1).
+ +
+Lemma coprime0p p : coprimep 0 p = (p %= 1).
+ +
+
+ +
+ This is different from coprimeP in div. shall we keep this? +
+
+Lemma coprimepP p q :
reflect ( d, d %| p d %| q d %= 1) (coprimep p q).
+ +
+Lemma coprimepPn p q : p != 0
+  reflect ( d, (d %| gcdp p q) && ~~ (d %= 1)) (~~ coprimep p q).
+ +
+Lemma coprimep_dvdl q p r : r %| q coprimep p q coprimep p r.
+ +
+Lemma coprimep_dvdr p q r :
+  r %| p coprimep p q coprimep r q.
+ +
+Lemma coprimep_modl p q : coprimep (p %% q) q = coprimep p q.
+ +
+Lemma coprimep_modr q p : coprimep q (p %% q) = coprimep q p.
+ +
+Lemma rcoprimep_coprimep q p : rcoprimep q p = coprimep q p.
+ +
+Lemma eqp_coprimepr p q r : q %= r coprimep p q = coprimep p r.
+ +
+Lemma eqp_coprimepl p q r : q %= r coprimep q p = coprimep r p.
+ +
+
+ +
+ This should be implemented with an extended remainder sequence +
+
+Fixpoint egcdp_rec p q k {struct k} : {poly R} × {poly R} :=
+  if k is k'.+1 then
+    if q == 0 then (1, 0) else
+    let: (u, v) := egcdp_rec q (p %% q) k' in
+      (lead_coef q ^+ scalp p q *: v, (u - v × (p %/ q)))
+  else (1, 0).
+ +
+Definition egcdp p q :=
+  if size q size p then egcdp_rec p q (size q)
+    else let e := egcdp_rec q p (size p) in (e.2, e.1).
+ +
+
+ +
+ No provable egcd0p +
+
+Lemma egcdp0 p : egcdp p 0 = (1, 0).
+ +
+Lemma egcdp_recP : k p q, q != 0 size q k size q size p
+  let e := (egcdp_rec p q k) in
+    [/\ size e.1 size q, size e.2 size p & gcdp p q %= e.1 × p + e.2 × q].
+ +
+Lemma egcdpP p q : p != 0 q != 0 (e := egcdp p q),
+  [/\ size e.1 size q, size e.2 size p & gcdp p q %= e.1 × p + e.2 × q].
+ +
+Lemma egcdpE p q (e := egcdp p q) : gcdp p q %= e.1 × p + e.2 × q.
+ +
+Lemma Bezoutp p q : u, u.1 × p + u.2 × q %= (gcdp p q).
+ +
+Lemma Bezout_coprimepP : p q,
+  reflect ( u, u.1 × p + u.2 × q %= 1) (coprimep p q).
+ +
+Lemma coprimep_root p q x : coprimep p q root p x q.[x] != 0.
+ +
+Lemma Gauss_dvdpl p q d: coprimep d q (d %| p × q) = (d %| p).
+ +
+Lemma Gauss_dvdpr p q d: coprimep d q (d %| q × p) = (d %| p).
+ +
+
+ +
+ This could be simplified with the introduction of lcmp +
+
+Lemma Gauss_dvdp m n p : coprimep m n (m × n %| p) = (m %| p) && (n %| p).
+ +
+Lemma Gauss_gcdpr p m n : coprimep p m gcdp p (m × n) %= gcdp p n.
+ +
+Lemma Gauss_gcdpl p m n : coprimep p n gcdp p (m × n) %= gcdp p m.
+ +
+Lemma coprimep_mulr p q r : coprimep p (q × r) = (coprimep p q && coprimep p r).
+ +
+Lemma coprimep_mull p q r: coprimep (q × r) p = (coprimep q p && coprimep r p).
+ +
+Lemma modp_coprime k u n : k != 0 (k × u) %% n %= 1 coprimep k n.
+ +
+Lemma coprimep_pexpl k m n : 0 < k coprimep (m ^+ k) n = coprimep m n.
+ +
+Lemma coprimep_pexpr k m n : 0 < k coprimep m (n ^+ k) = coprimep m n.
+ +
+Lemma coprimep_expl k m n : coprimep m n coprimep (m ^+ k) n.
+ +
+Lemma coprimep_expr k m n : coprimep m n coprimep m (n ^+ k).
+ +
+Lemma gcdp_mul2l p q r : gcdp (p × q) (p × r) %= (p × gcdp q r).
+ +
+Lemma gcdp_mul2r q r p : gcdp (q × p) (r × p) %= (gcdp q r × p).
+ +
+Lemma mulp_gcdr p q r : r × (gcdp p q) %= gcdp (r × p) (r × q).
+ +
+Lemma mulp_gcdl p q r : (gcdp p q) × r %= gcdp (p × r) (q × r).
+ +
+Lemma coprimep_div_gcd p q : (p != 0) || (q != 0)
+  coprimep (p %/ (gcdp p q)) (q %/ gcdp p q).
+ +
+Lemma divp_eq0 p q : (p %/ q == 0) = [|| p == 0, q ==0 | size p < size q].
+ +
+Lemma dvdp_div_eq0 p q : q %| p (p %/ q == 0) = (p == 0).
+ +
+Lemma Bezout_coprimepPn p q : p != 0 q != 0
+  reflect (exists2 uv : {poly R} × {poly R},
+    (0 < size uv.1 < size q) && (0 < size uv.2 < size p) &
+      uv.1 × p = uv.2 × q)
+    (~~ (coprimep p q)).
+ +
+Lemma dvdp_pexp2r m n k : k > 0 (m ^+ k %| n ^+ k) = (m %| n).
+ +
+Lemma root_gcd p q x : root (gcdp p q) x = root p x && root q x.
+ +
+Lemma root_biggcd : x (ps : seq {poly R}),
+  root (\big[gcdp/0]_(p <- ps) p) x = all (fun proot p x) ps.
+ +
+
+ +
+ "gdcop Q P" is the Greatest Divisor of P which is coprime to Q + if P null, we pose that gdcop returns 1 if Q null, 0 otherwise +
+
+Fixpoint gdcop_rec q p k :=
+  if k is m.+1 then
+      if coprimep p q then p
+        else gdcop_rec q (divp p (gcdp p q)) m
+    else (q == 0)%:R.
+ +
+Definition gdcop q p := gdcop_rec q p (size p).
+ +
+CoInductive gdcop_spec q p : {poly R} Type :=
+  GdcopSpec r of (dvdp r p) & ((coprimep r q) || (p == 0))
+  & ( d, dvdp d p coprimep d q dvdp d r)
+  : gdcop_spec q p r.
+ +
+Lemma gdcop0 q : gdcop q 0 = (q == 0)%:R.
+ +
+Lemma gdcop_recP : q p k,
+  size p k gdcop_spec q p (gdcop_rec q p k).
+ +
+Lemma gdcopP q p : gdcop_spec q p (gdcop q p).
+ +
+Lemma coprimep_gdco p q : (q != 0)%B coprimep (gdcop p q) p.
+ +
+Lemma size2_dvdp_gdco p q d : p != 0 size d = 2%N
+  (d %| (gdcop q p)) = (d %| p) && ~~(d %| q).
+ +
+Lemma dvdp_gdco p q : (gdcop p q) %| q.
+ +
+Lemma root_gdco p q x : p != 0 root (gdcop q p) x = root p x && ~~(root q x).
+ +
+Lemma dvdp_comp_poly r p q : (p %| q) (p \Po r) %| (q \Po r).
+ +
+Lemma gcdp_comp_poly r p q : gcdp p q \Po r %= gcdp (p \Po r) (q \Po r).
+ +
+Lemma coprimep_comp_poly r p q : coprimep p q coprimep (p \Po r) (q \Po r).
+ +
+Lemma coprimep_addl_mul p q r : coprimep r (p × r + q) = coprimep r q.
+ +
+Definition irreducible_poly p :=
+  (size p > 1) × ( q, size q != 1%N q %| p q %= p) : Prop.
+ +
+Lemma irredp_neq0 p : irreducible_poly p p != 0.
+ +
+Definition apply_irredp p (irr_p : irreducible_poly p) := irr_p.2.
+Coercion apply_irredp : irreducible_poly >-> Funclass.
+ +
+Lemma modp_XsubC p c : p %% ('X - c%:P) = p.[c]%:P.
+ +
+Lemma coprimep_XsubC p c : coprimep p ('X - c%:P) = ~~ root p c.
+ +
+Lemma coprimepX p : coprimep p 'X = ~~ root p 0.
+ +
+Lemma eqp_monic : {in monic &, p q, (p %= q) = (p == q)}.
+ +
+Lemma dvdp_mul_XsubC p q c :
+  (p %| ('X - c%:P) × q) = ((if root p c then p %/ ('X - c%:P) else p) %| q).
+ +
+Lemma dvdp_prod_XsubC (I : Type) (r : seq I) (F : I R) p :
+    p %| \prod_(i <- r) ('X - (F i)%:P)
+  {m | p %= \prod_(i <- mask m r) ('X - (F i)%:P)}.
+ +
+Lemma irredp_XsubC (x : R) : irreducible_poly ('X - x%:P).
+ +
+Lemma irredp_XsubCP d p :
+  irreducible_poly p d %| p {d %= 1} + {d %= p}.
+ +
+End IDomainPseudoDivision.
+ +
+Hint Resolve eqpxx divp0 divp1 mod0p modp0 modp1 dvdp_mull dvdp_mulr dvdpp.
+Hint Resolve dvdp0.
+ +
+End CommonIdomain.
+ +
+Module Idomain.
+ +
+Include IdomainDefs.
+Export IdomainDefs.
+Include WeakIdomain.
+Include CommonIdomain.
+ +
+End Idomain.
+ +
+Module IdomainMonic.
+ +
+Import Ring ComRing UnitRing IdomainDefs Idomain.
+ +
+Section MonicDivisor.
+ +
+Variable R : idomainType.
+Variable q : {poly R}.
+Hypothesis monq : q \is monic.
+ +
+Implicit Type p d r : {poly R}.
+ +
+Lemma divpE p : p %/ q = rdivp p q.
+ +
+Lemma modpE p : p %% q = rmodp p q.
+ +
+Lemma scalpE p : scalp p q = 0%N.
+ +
+Lemma divp_eq p : p = (p %/ q) × q + (p %% q).
+ +
+Lemma divpp p : q %/ q = 1.
+ +
+Lemma dvdp_eq p : (q %| p) = (p == (p %/ q) × q).
+ +
+Lemma dvdpP p : reflect ( qq, p = qq × q) (q %| p).
+ +
+Lemma mulpK p : p × q %/ q = p.
+ +
+Lemma mulKp p : q × p %/ q = p.
+ +
+End MonicDivisor.
+ +
+End IdomainMonic.
+ +
+Module IdomainUnit.
+ +
+Import Ring ComRing UnitRing IdomainDefs Idomain.
+ +
+Section UnitDivisor.
+ +
+Variable R : idomainType.
+Variable d : {poly R}.
+ +
+Hypothesis ulcd : lead_coef d \in GRing.unit.
+ +
+Implicit Type p q r : {poly R}.
+ +
+Lemma divp_eq p : p = (p %/ d) × d + (p %% d).
+ +
+Lemma edivpP p q r : p = q × d + r size r < size d
+  q = (p %/ d) r = p %% d.
+ +
+Lemma divpP p q r : p = q × d + r size r < size d
+  q = (p %/ d).
+ +
+Lemma modpP p q r : p = q × d + r size r < size d r = (p %% d).
+ +
+Lemma ulc_eqpP p q : lead_coef q \is a GRing.unit
+  reflect (exists2 c : R, c != 0 & p = c *: q) (p %= q).
+ +
+Lemma dvdp_eq p : (d %| p) = (p == p %/ d × d).
+ +
+Lemma ucl_eqp_eq p q : lead_coef q \is a GRing.unit
+  p %= q p = (lead_coef p / lead_coef q) *: q.
+ +
+Lemma modp_scalel c p : (c *: p) %% d = c *: (p %% d).
+ +
+Lemma divp_scalel c p : (c *: p) %/ d = c *: (p %/ d).
+ +
+Lemma eqp_modpl p q : p %= q (p %% d) %= (q %% d).
+ +
+Lemma eqp_divl p q : p %= q (p %/ d) %= (q %/ d).
+ +
+Lemma modp_opp p : (- p) %% d = - (p %% d).
+ +
+Lemma divp_opp p : (- p) %/ d = - (p %/ d).
+ +
+Lemma modp_add p q : (p + q) %% d = p %% d + q %% d.
+ +
+Lemma divp_add p q : (p + q) %/ d = p %/ d + q %/ d.
+ +
+Lemma mulpK q : (q × d) %/ d = q.
+ +
+Lemma mulKp q : (d × q) %/ d = q.
+ +
+Lemma divp_addl_mul_small q r :
+  size r < size d (q × d + r) %/ d = q.
+ +
+Lemma modp_addl_mul_small q r :
+  size r < size d (q × d + r) %% d = r.
+ +
+Lemma divp_addl_mul q r : (q × d + r) %/ d = q + r %/ d.
+ +
+Lemma divpp : d %/ d = 1.
+ +
+Lemma leq_trunc_divp m : size (m %/ d × d) size m.
+ +
+Lemma dvdpP p : reflect ( q, p = q × d) (d %| p).
+ +
+Lemma divpK p : d %| p p %/ d × d = p.
+ +
+Lemma divpKC p : d %| p d × (p %/ d) = p.
+ +
+Lemma dvdp_eq_div p q : d %| p (q == p %/ d) = (q × d == p).
+ +
+Lemma dvdp_eq_mul p q : d %| p (p == q × d) = (p %/ d == q).
+ +
+Lemma divp_mulA p q : d %| q p × (q %/ d) = p × q %/ d.
+ +
+Lemma divp_mulAC m n : d %| m m %/ d × n = m × n %/ d.
+ +
+Lemma divp_mulCA p q : d %| p d %| q p × (q %/ d) = q × (p %/ d).
+ +
+Lemma modp_mul p q : (p × (q %% d)) %% d = (p × q) %% d.
+ +
+End UnitDivisor.
+ +
+Section MoreUnitDivisor.
+ +
+Variable R : idomainType.
+Variable d : {poly R}.
+Hypothesis ulcd : lead_coef d \in GRing.unit.
+ +
+Implicit Types p q : {poly R}.
+ +
+Lemma expp_sub m n : n m (d ^+ (m - n))%N = d ^+ m %/ d ^+ n.
+ +
+Lemma divp_pmul2l p q : lead_coef q \in GRing.unit d × p %/ (d × q) = p %/ q.
+ +
+Lemma divp_pmul2r p q :
+  lead_coef p \in GRing.unit q × d %/ (p × d) = q %/ p.
+ +
+Lemma divp_divl r p q :
+    lead_coef r \in GRing.unit lead_coef p \in GRing.unit
+  q %/ p %/ r = q %/ (p × r).
+ +
+Lemma divpAC p q : lead_coef p \in GRing.unit q %/ d %/ p = q %/ p %/ d.
+ +
+Lemma modp_scaler c p : c \in GRing.unit p %% (c *: d) = (p %% d).
+ +
+Lemma divp_scaler c p : c \in GRing.unit p %/ (c *: d) = c^-1 *: (p %/ d).
+ +
+End MoreUnitDivisor.
+ +
+End IdomainUnit.
+ +
+Module Field.
+ +
+Import Ring ComRing UnitRing.
+Include IdomainDefs.
+Export IdomainDefs.
+Include CommonIdomain.
+ +
+Section FieldDivision.
+ +
+Variable F : fieldType.
+ +
+Implicit Type p q r d : {poly F}.
+ +
+Lemma divp_eq p q : p = (p %/ q) × q + (p %% q).
+ +
+Lemma divp_modpP p q d r : p = q × d + r size r < size d
+  q = (p %/ d) r = p %% d.
+ +
+Lemma divpP p q d r : p = q × d + r size r < size d
+  q = (p %/ d).
+ +
+Lemma modpP p q d r : p = q × d + r size r < size d r = (p %% d).
+ +
+Lemma eqpfP p q : p %= q p = (lead_coef p / lead_coef q) *: q.
+ +
+Lemma dvdp_eq q p : (q %| p) = (p == p %/ q × q).
+ +
+Lemma eqpf_eq p q : reflect (exists2 c, c != 0 & p = c *: q) (p %= q).
+ +
+Lemma modp_scalel c p q : (c *: p) %% q = c *: (p %% q).
+ +
+Lemma mulpK p q : q != 0 p × q %/ q = p.
+ +
+Lemma mulKp p q : q != 0 q × p %/ q = p.
+ +
+Lemma divp_scalel c p q : (c *: p) %/ q = c *: (p %/ q).
+ +
+Lemma modp_scaler c p d : c != 0 p %% (c *: d) = (p %% d).
+ +
+Lemma divp_scaler c p d : c != 0 p %/ (c *: d) = c^-1 *: (p %/ d).
+ +
+Lemma eqp_modpl d p q : p %= q (p %% d) %= (q %% d).
+ +
+Lemma eqp_divl d p q : p %= q (p %/ d) %= (q %/ d).
+ +
+Lemma eqp_modpr d p q : p %= q (d %% p) %= (d %% q).
+ +
+Lemma eqp_mod p1 p2 q1 q2 : p1 %= p2 q1 %= q2 p1 %% q1 %= p2 %% q2.
+ +
+Lemma eqp_divr (d m n : {poly F}) : m %= n (d %/ m) %= (d %/ n).
+ +
+Lemma eqp_div p1 p2 q1 q2 : p1 %= p2 q1 %= q2 p1 %/ q1 %= p2 %/ q2.
+ +
+Lemma eqp_gdcor p q r : q %= r gdcop p q %= gdcop p r.
+ +
+Lemma eqp_gdcol p q r : q %= r gdcop q p %= gdcop r p.
+ +
+Lemma eqp_rgdco_gdco q p : rgdcop q p %= gdcop q p.
+ +
+Lemma modp_opp p q : (- p) %% q = - (p %% q).
+ +
+Lemma divp_opp p q : (- p) %/ q = - (p %/ q).
+ +
+Lemma modp_add d p q : (p + q) %% d = p %% d + q %% d.
+ +
+Lemma modNp p q : (- p) %% q = - (p %% q).
+ +
+Lemma divp_add d p q : (p + q) %/ d = p %/ d + q %/ d.
+ +
+Lemma divp_addl_mul_small d q r :
+  size r < size d (q × d + r) %/ d = q.
+ +
+Lemma modp_addl_mul_small d q r :
+  size r < size d (q × d + r) %% d = r.
+ +
+Lemma divp_addl_mul d q r : d != 0 (q × d + r) %/ d = q + r %/ d.
+ +
+Lemma divpp d : d != 0 d %/ d = 1.
+ +
+Lemma leq_trunc_divp d m : size (m %/ d × d) size m.
+ +
+Lemma divpK d p : d %| p p %/ d × d = p.
+ +
+Lemma divpKC d p : d %| p d × (p %/ d) = p.
+ +
+Lemma dvdp_eq_div d p q : d != 0 d %| p (q == p %/ d) = (q × d == p).
+ +
+Lemma dvdp_eq_mul d p q : d != 0 d %| p (p == q × d) = (p %/ d == q).
+ +
+Lemma divp_mulA d p q : d %| q p × (q %/ d) = p × q %/ d.
+ +
+Lemma divp_mulAC d m n : d %| m m %/ d × n = m × n %/ d.
+ +
+Lemma divp_mulCA d p q : d %| p d %| q p × (q %/ d) = q × (p %/ d).
+ +
+Lemma expp_sub d m n : d != 0 m n (d ^+ (m - n))%N = d ^+ m %/ d ^+ n.
+ +
+Lemma divp_pmul2l d q p : d != 0 q != 0 d × p %/ (d × q) = p %/ q.
+ +
+Lemma divp_pmul2r d p q : d != 0 p != 0 q × d %/ (p × d) = q %/ p.
+ +
+Lemma divp_divl r p q : q %/ p %/ r = q %/ (p × r).
+ +
+Lemma divpAC d p q : q %/ d %/ p = q %/ p %/ d.
+ +
+Lemma edivp_def p q : edivp p q = (0%N, p %/ q, p %% q).
+ +
+Lemma divpE p q : p %/ q = (lead_coef q)^-(rscalp p q) *: (rdivp p q).
+ +
+Lemma modpE p q : p %% q = (lead_coef q)^-(rscalp p q) *: (rmodp p q).
+ +
+Lemma scalpE p q : scalp p q = 0%N.
+ +
+
+ +
+ Just to have it without importing the weak theory +
+
+Lemma dvdpE p q : p %| q = rdvdp p q.
+ +
+CoInductive edivp_spec m d : nat × {poly F} × {poly F} Type :=
+  EdivpSpec n q r of
+  m = q × d + r & (d != 0) ==> (size r < size d) : edivp_spec m d (n, q, r).
+ +
+Lemma edivpP m d : edivp_spec m d (edivp m d).
+ +
+Lemma edivp_eq d q r : size r < size d edivp (q × d + r) d = (0%N, q, r).
+ +
+Lemma modp_mul p q m : (p × (q %% m)) %% m = (p × q) %% m.
+ +
+Lemma dvdpP p q : reflect ( qq, p = qq × q) (q %| p).
+ +
+Lemma Bezout_eq1_coprimepP : p q,
+  reflect ( u, u.1 × p + u.2 × q = 1) (coprimep p q).
+ +
+Lemma dvdp_gdcor p q : q != 0 p %| (gdcop q p) × (q ^+ size p).
+ +
+Lemma reducible_cubic_root p q :
+  size p 4 1 < size q < size p q %| p {r | root p r}.
+ +
+Lemma cubic_irreducible p :
+  1 < size p 4 ( x, ~~ root p x) irreducible_poly p.
+ +
+Section FieldRingMap.
+ +
+Variable rR : ringType.
+ +
+Variable f : {rmorphism F rR}.
+ +
+Implicit Type a b : {poly F}.
+ +
+Lemma redivp_map a b :
+  redivp a^f b^f = (rscalp a b, (rdivp a b)^f, (rmodp a b)^f).
+ +
+End FieldRingMap.
+ +
+Section FieldMap.
+ +
+Variable rR : idomainType.
+ +
+Variable f : {rmorphism F rR}.
+ +
+Implicit Type a b : {poly F}.
+ +
+Lemma edivp_map a b :
+  edivp a^f b^f = (0%N, (a %/ b)^f, (a %% b)^f).
+ +
+Lemma scalp_map p q : scalp p^f q^f = scalp p q.
+ +
+Lemma map_divp p q : (p %/ q)^f = p^f %/ q^f.
+ +
+Lemma map_modp p q : (p %% q)^f = p^f %% q^f.
+ +
+Lemma egcdp_map p q :
+  egcdp (map_poly f p) (map_poly f q)
+     = (map_poly f (egcdp p q).1, map_poly f (egcdp p q).2).
+ +
+Lemma dvdp_map p q : (p^f %| q^f) = (p %| q).
+ +
+Lemma eqp_map p q : (p^f %= q^f) = (p %= q).
+ +
+Lemma gcdp_map p q : (gcdp p q)^f = gcdp p^f q^f.
+ +
+Lemma coprimep_map p q : coprimep p^f q^f = coprimep p q.
+ +
+Lemma gdcop_rec_map p q n : (gdcop_rec p q n)^f = (gdcop_rec p^f q^f n).
+ +
+Lemma gdcop_map p q : (gdcop p q)^f = (gdcop p^f q^f).
+ +
+End FieldMap.
+ +
+End FieldDivision.
+ +
+End Field.
+ +
+Module ClosedField.
+ +
+Import Field.
+ +
+Section closed.
+ +
+Variable F : closedFieldType.
+ +
+Lemma root_coprimep (p q : {poly F}):
+  ( x, root p x q.[x] != 0) coprimep p q.
+ +
+Lemma coprimepP (p q : {poly F}):
+  reflect ( x, root p x q.[x] != 0) (coprimep p q).
+ +
+End closed.
+ +
+End ClosedField.
+ +
+End Pdiv.
+ +
+Export Pdiv.Field.
+
+
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3