From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.algebra.polydiv.html | 2053 ---------------------------- 1 file changed, 2053 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.algebra.polydiv.html (limited to 'docs/htmldoc/mathcomp.algebra.polydiv.html') diff --git a/docs/htmldoc/mathcomp.algebra.polydiv.html b/docs/htmldoc/mathcomp.algebra.polydiv.html deleted file mode 100644 index 7fba25f..0000000 --- a/docs/htmldoc/mathcomp.algebra.polydiv.html +++ /dev/null @@ -1,2053 +0,0 @@ - - - - - -mathcomp.algebra.polydiv - - - - -
- - - -
- -

Library mathcomp.algebra.polydiv

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-
- -
- This file provides a library for the basic theory of Euclidean and pseudo- - Euclidean division for polynomials over ring structures. - The library defines two versions of the pseudo-euclidean division: one for - coefficients in a (not necessarily commutative) ring structure and one for - coefficients equipped with a structure of integral domain. From the latter - we derive the definition of the usual Euclidean division for coefficients - in a field. Only the definition of the pseudo-division for coefficients in - an integral domain is exported by default and benefits from notations. - Also, the only theory exported by default is the one of division for - polynomials with coefficients in a field. - Other definitions and facts are qualified using name spaces indicating the - hypotheses made on the structure of coefficients and the properties of the - polynomial one divides with. - -
- - Pdiv.Field (exported by the present library): - edivp p q == pseudo-division of p by q with p q : {poly R} where - R is an idomainType. - Computes (k, quo, rem) : nat * {poly r} * {poly R}, - such that size rem < size q and: - + if lead_coef q is not a unit, then: - (lead_coef q ^+ k) *: p = q * quo + rem - + else if lead_coef q is a unit, then: - p = q * quo + rem and k = 0 - p %/ q == quotient (second component) computed by (edivp p q). - p %% q == remainder (third component) computed by (edivp p q). - scalp p q == exponent (first component) computed by (edivp p q). - p %| q == tests the nullity of the remainder of the - pseudo-division of p by q. - rgcdp p q == Pseudo-greater common divisor obtained by performing - the Euclidean algorithm on p and q using redivp as - Euclidean division. - p %= q == p and q are associate polynomials, i.e., p %| q and - q %| p, or equivalently, p = c *: q for some nonzero - constant c. - gcdp p q == Pseudo-greater common divisor obtained by performing - the Euclidean algorithm on p and q using edivp as - Euclidean division. - egcdp p q == The pair of Bezout coefficients: if e := egcdp p q, - then size e.1 <= size q, size e.2 <= size p, and - gcdp p q %= e.1 * p + e.2 * q - coprimep p q == p and q are coprime, i.e., (gcdp p q) is a nonzero - constant. - gdcop q p == greatest divisor of p which is coprime to q. - irreducible_poly p <-> p has only trivial (constant) divisors. - -
- - Pdiv.Idomain: theory available for edivp and the related operation under - the sole assumption that the ring of coefficients is canonically an - integral domain (R : idomainType). - -
- - Pdiv.IdomainMonic: theory available for edivp and the related operations - under the assumption that the ring of coefficients is canonically - and integral domain (R : idomainType) an the divisor is monic. - -
- - Pdiv.IdomainUnit: theory available for edivp and the related operations - under the assumption that the ring of coefficients is canonically an - integral domain (R : idomainType) and the leading coefficient of the - divisor is a unit. - -
- - Pdiv.ClosedField: theory available for edivp and the related operation - under the sole assumption that the ring of coefficients is canonically - an algebraically closed field (R : closedField). - -
- - Pdiv.Ring : - redivp p q == pseudo-division of p by q with p q : {poly R} where R is - a ringType. - Computes (k, quo, rem) : nat * {poly r} * {poly R}, - such that if rem = 0 then quo * q = p * (lead_coef q ^+ k) - -
- - rdivp p q == quotient (second component) computed by (redivp p q). - rmodp p q == remainder (third component) computed by (redivp p q). - rscalp p q == exponent (first component) computed by (redivp p q). - rdvdp p q == tests the nullity of the remainder of the pseudo-division - of p by q. - rgcdp p q == analogue of gcdp for coefficients in a ringType. - rgdcop p q == analogue of gdcop for coefficients in a ringType. -rcoprimep p q == analogue of coprimep p q for coefficients in a ringType. - -
- - Pdiv.RingComRreg : theory of the operations defined in Pdiv.Ring, when the - ring of coefficients is canonically commutative (R : comRingType) and - the leading coefficient of the divisor is both right regular and - commutes as a constant polynomial with the divisor itself - -
- - Pdiv.RingMonic : theory of the operations defined in Pdiv.Ring, under the - assumption that the divisor is monic. - -
- - Pdiv.UnitRing: theory of the operations defined in Pdiv.Ring, when the - ring R of coefficients is canonically with units (R : unitRingType). - -
-
- -
-Set Implicit Arguments.
- -
-Import GRing.Theory.
-Local Open Scope ring_scope.
- -
-Reserved Notation "p %= q" (at level 70, no associativity).
- -
- -
-Module Pdiv.
- -
-Module CommonRing.
- -
-Section RingPseudoDivision.
- -
-Variable R : ringType.
-Implicit Types d p q r : {poly R}.
- -
-
- -
- Pseudo division, defined on an arbitrary ring -
-
-Definition redivp_rec (q : {poly R}) :=
-  let sq := size q in
-  let cq := lead_coef q in
-   fix loop (k : nat) (qq r : {poly R})(n : nat) {struct n} :=
-    if size r < sq then (k, qq, r) else
-    let m := (lead_coef r) *: 'X^(size r - sq) in
-    let qq1 := qq × cq%:P + m in
-    let r1 := r × cq%:P - m × q in
-       if n is n1.+1 then loop k.+1 qq1 r1 n1 else (k.+1, qq1, r1).
- -
-Definition redivp_expanded_def p q :=
-   if q == 0 then (0%N, 0, p) else redivp_rec q 0 0 p (size p).
-Fact redivp_key : unit.
-Definition redivp : {poly R} {poly R} nat × {poly R} × {poly R} :=
-  locked_with redivp_key redivp_expanded_def.
-Canonical redivp_unlockable := [unlockable fun redivp].
- -
-Definition rdivp p q := ((redivp p q).1).2.
-Definition rmodp p q := (redivp p q).2.
-Definition rscalp p q := ((redivp p q).1).1.
-Definition rdvdp p q := rmodp q p == 0.
-
- -
-Definition rmultp := [rel m d | rdvdp d m]. -
-
-Lemma redivp_def p q : redivp p q = (rscalp p q, rdivp p q, rmodp p q).
- -
-Lemma rdiv0p p : rdivp 0 p = 0.
- -
-Lemma rdivp0 p : rdivp p 0 = 0.
- -
-Lemma rdivp_small p q : size p < size q rdivp p q = 0.
- -
-Lemma leq_rdivp p q : size (rdivp p q) size p.
- -
-Lemma rmod0p p : rmodp 0 p = 0.
- -
-Lemma rmodp0 p : rmodp p 0 = p.
- -
-Lemma rscalp_small p q : size p < size q rscalp p q = 0%N.
- -
-Lemma ltn_rmodp p q : (size (rmodp p q) < size q) = (q != 0).
- -
-Lemma ltn_rmodpN0 p q : q != 0 size (rmodp p q) < size q.
- -
-Lemma rmodp1 p : rmodp p 1 = 0.
- -
-Lemma rmodp_small p q : size p < size q rmodp p q = p.
- -
-Lemma leq_rmodp m d : size (rmodp m d) size m.
- -
-Lemma rmodpC p c : c != 0 rmodp p c%:P = 0.
- -
-Lemma rdvdp0 d : rdvdp d 0.
- -
-Lemma rdvd0p n : (rdvdp 0 n) = (n == 0).
- -
-Lemma rdvd0pP n : reflect (n = 0) (rdvdp 0 n).
- -
-Lemma rdvdpN0 p q : rdvdp p q q != 0 p != 0.
- -
-Lemma rdvdp1 d : (rdvdp d 1) = ((size d) == 1%N).
- -
-Lemma rdvd1p m : rdvdp 1 m.
- -
-Lemma Nrdvdp_small (n d : {poly R}) :
-  n != 0 size n < size d (rdvdp d n) = false.
- -
-Lemma rmodp_eq0P p q : reflect (rmodp p q = 0) (rdvdp q p).
- -
-Lemma rmodp_eq0 p q : rdvdp q p rmodp p q = 0.
- -
-Lemma rdvdp_leq p q : rdvdp p q q != 0 size p size q.
- -
-Definition rgcdp p q :=
-  let: (p1, q1) := if size p < size q then (q, p) else (p, q) in
-  if p1 == 0 then q1 else
-  let fix loop (n : nat) (pp qq : {poly R}) {struct n} :=
-      let rr := rmodp pp qq in
-      if rr == 0 then qq else
-      if n is n1.+1 then loop n1 qq rr else rr in
-  loop (size p1) p1 q1.
- -
-Lemma rgcd0p : left_id 0 rgcdp.
- -
-Lemma rgcdp0 : right_id 0 rgcdp.
- -
-Lemma rgcdpE p q :
-  rgcdp p q = if size p < size q
-    then rgcdp (rmodp q p) p else rgcdp (rmodp p q) q.
- -
-Variant comm_redivp_spec m d : nat × {poly R} × {poly R} Type :=
-  ComEdivnSpec k (q r : {poly R}) of
-   (GRing.comm d (lead_coef d)%:P m × (lead_coef d ^+ k)%:P = q × d + r) &
-   (d != 0 size r < size d) : comm_redivp_spec m d (k, q, r).
- -
-Lemma comm_redivpP m d : comm_redivp_spec m d (redivp m d).
- -
-Lemma rmodpp p : GRing.comm p (lead_coef p)%:P rmodp p p = 0.
- -
-Definition rcoprimep (p q : {poly R}) := size (rgcdp p q) == 1%N.
- -
-Fixpoint rgdcop_rec q p n :=
-  if n is m.+1 then
-      if rcoprimep p q then p
-        else rgdcop_rec q (rdivp p (rgcdp p q)) m
-    else (q == 0)%:R.
- -
-Definition rgdcop q p := rgdcop_rec q p (size p).
- -
-Lemma rgdcop0 q : rgdcop q 0 = (q == 0)%:R.
- -
-End RingPseudoDivision.
- -
-End CommonRing.
- -
-Module RingComRreg.
- -
-Import CommonRing.
- -
-Section ComRegDivisor.
- -
-Variable R : ringType.
-Variable d : {poly R}.
-Hypothesis Cdl : GRing.comm d (lead_coef d)%:P.
-Hypothesis Rreg : GRing.rreg (lead_coef d).
- -
-Implicit Types p q r : {poly R}.
- -
-Lemma redivp_eq q r :
-    size r < size d
-    let k := (redivp (q × d + r) d).1.1 in
-    let c := (lead_coef d ^+ k)%:P in
-  redivp (q × d + r) d = (k, q × c, r × c).
- -
-
- -
- this is a bad name -
-
-Lemma rdivp_eq p :
-  p × (lead_coef d ^+ (rscalp p d))%:P = (rdivp p d) × d + (rmodp p d).
- -
-
- -
- section variables impose an inconvenient order on parameters -
-
-Lemma eq_rdvdp k q1 p:
-  p × ((lead_coef d)^+ k)%:P = q1 × d rdvdp d p.
- -
-Variant rdvdp_spec p q : {poly R} bool Type :=
-  | Rdvdp k q1 & p × ((lead_coef q)^+ k)%:P = q1 × q : rdvdp_spec p q 0 true
-  | RdvdpN & rmodp p q != 0 : rdvdp_spec p q (rmodp p q) false.
- -
-
- -
- Is that version useable ? -
-
- -
-Lemma rdvdp_eqP p : rdvdp_spec p d (rmodp p d) (rdvdp d p).
- -
-Lemma rdvdp_mull p : rdvdp d (p × d).
- -
-Lemma rmodp_mull p : rmodp (p × d) d = 0.
- -
-Lemma rmodpp : rmodp d d = 0.
- -
-Lemma rdivpp : rdivp d d = (lead_coef d ^+ rscalp d d)%:P.
- -
-Lemma rdvdpp : rdvdp d d.
- -
-Lemma rdivpK p : rdvdp d p
-  (rdivp p d) × d = p × (lead_coef d ^+ rscalp p d)%:P.
- -
-End ComRegDivisor.
- -
-End RingComRreg.
- -
-Module RingMonic.
- -
-Import CommonRing.
- -
-Import RingComRreg.
- -
-Section MonicDivisor.
- -
-Variable R : ringType.
-Implicit Types p q r : {poly R}.
- -
-Variable d : {poly R}.
-Hypothesis mond : d \is monic.
- -
-Lemma redivp_eq q r : size r < size d
-  let k := (redivp (q × d + r) d).1.1 in
-  redivp (q × d + r) d = (k, q, r).
- -
-Lemma rdivp_eq p :
-  p = (rdivp p d) × d + (rmodp p d).
- -
-Lemma rdivpp : rdivp d d = 1.
- -
-Lemma rdivp_addl_mul_small q r :
-  size r < size d rdivp (q × d + r) d = q.
- -
-Lemma rdivp_addl_mul q r : rdivp (q × d + r) d = q + rdivp r d.
- -
-Lemma rdivp_addl q r :
-  rdvdp d q rdivp (q + r) d = rdivp q d + rdivp r d.
- -
-Lemma rdivp_addr q r :
-  rdvdp d r rdivp (q + r) d = rdivp q d + rdivp r d.
- -
-Lemma rdivp_mull p : rdivp (p × d) d = p.
- -
-Lemma rmodp_mull p : rmodp (p × d) d = 0.
- -
-Lemma rmodpp : rmodp d d = 0.
- -
-Lemma rmodp_addl_mul_small q r :
-  size r < size d rmodp (q × d + r) d = r.
- -
-Lemma rmodp_add p q : rmodp (p + q) d = rmodp p d + rmodp q d.
- -
-Lemma rmodp_mulmr p q : rmodp (p × (rmodp q d)) d = rmodp (p × q) d.
- -
-Lemma rdvdpp : rdvdp d d.
- -
-
- -
- section variables impose an inconvenient order on parameters -
-
-Lemma eq_rdvdp q1 p : p = q1 × d rdvdp d p.
- -
-Lemma rdvdp_mull p : rdvdp d (p × d).
- -
-Lemma rdvdpP p : reflect ( qq, p = qq × d) (rdvdp d p).
- -
-Lemma rdivpK p : rdvdp d p (rdivp p d) × d = p.
- -
-End MonicDivisor.
-End RingMonic.
- -
-Module Ring.
- -
-Include CommonRing.
-Import RingMonic.
- -
-Section ExtraMonicDivisor.
- -
-Variable R : ringType.
- -
-Implicit Types d p q r : {poly R}.
- -
-Lemma rdivp1 p : rdivp p 1 = p.
- -
-Lemma rdvdp_XsubCl p x : rdvdp ('X - x%:P) p = root p x.
- -
-Lemma polyXsubCP p x : reflect (p.[x] = 0) (rdvdp ('X - x%:P) p).
- -
-Lemma root_factor_theorem p x : root p x = (rdvdp ('X - x%:P) p).
- -
-End ExtraMonicDivisor.
- -
-End Ring.
- -
-Module ComRing.
- -
-Import Ring.
- -
-Import RingComRreg.
- -
-Section CommutativeRingPseudoDivision.
- -
-Variable R : comRingType.
- -
-Implicit Types d p q m n r : {poly R}.
- -
-Variant redivp_spec (m d : {poly R}) : nat × {poly R} × {poly R} Type :=
-  EdivnSpec k (q r: {poly R}) of
-    (lead_coef d ^+ k) *: m = q × d + r &
-   (d != 0 size r < size d) : redivp_spec m d (k, q, r).
- -
-Lemma redivpP m d : redivp_spec m d (redivp m d).
- -
-Lemma rdivp_eq d p :
-  (lead_coef d ^+ (rscalp p d)) *: p = (rdivp p d) × d + (rmodp p d).
- -
-Lemma rdvdp_eqP d p : rdvdp_spec p d (rmodp p d) (rdvdp d p).
- -
-Lemma rdvdp_eq q p :
-  (rdvdp q p) = ((lead_coef q) ^+ (rscalp p q) *: p == (rdivp p q) × q).
- -
-End CommutativeRingPseudoDivision.
- -
-End ComRing.
- -
-Module UnitRing.
- -
-Import Ring.
- -
-Section UnitRingPseudoDivision.
- -
-Variable R : unitRingType.
-Implicit Type p q r d : {poly R}.
- -
-Lemma uniq_roots_rdvdp p rs :
-  all (root p) rs uniq_roots rs
-  rdvdp (\prod_(z <- rs) ('X - z%:P)) p.
- -
-End UnitRingPseudoDivision.
- -
-End UnitRing.
- -
-Module IdomainDefs.
- -
-Import Ring.
- -
-Section IDomainPseudoDivisionDefs.
- -
-Variable R : idomainType.
-Implicit Type p q r d : {poly R}.
- -
-Definition edivp_expanded_def p q :=
-  let: (k, d, r) as edvpq := redivp p q in
-  if lead_coef q \in GRing.unit then
-    (0%N, (lead_coef q)^-k *: d, (lead_coef q)^-k *: r)
-  else edvpq.
-Fact edivp_key : unit.
-Definition edivp := locked_with edivp_key edivp_expanded_def.
-Canonical edivp_unlockable := [unlockable fun edivp].
- -
-Definition divp p q := ((edivp p q).1).2.
-Definition modp p q := (edivp p q).2.
-Definition scalp p q := ((edivp p q).1).1.
-Definition dvdp p q := modp q p == 0.
-Definition eqp p q := (dvdp p q) && (dvdp q p).
- -
-End IDomainPseudoDivisionDefs.
- -
-Notation "m %/ d" := (divp m d) : ring_scope.
-Notation "m %% d" := (modp m d) : ring_scope.
-Notation "p %| q" := (dvdp p q) : ring_scope.
-Notation "p %= q" := (eqp p q) : ring_scope.
-End IdomainDefs.
- -
-Module WeakIdomain.
- -
-Import Ring ComRing UnitRing IdomainDefs.
- -
-Section WeakTheoryForIDomainPseudoDivision.
- -
-Variable R : idomainType.
-Implicit Type p q r d : {poly R}.
- -
-Lemma edivp_def p q : edivp p q = (scalp p q, divp p q, modp p q).
- -
-Lemma edivp_redivp p q : (lead_coef q \in GRing.unit) = false
-  edivp p q = redivp p q.
- -
-Lemma divpE p q :
-  p %/ q = if lead_coef q \in GRing.unit
-    then (lead_coef q)^-(rscalp p q) *: (rdivp p q)
-    else rdivp p q.
- -
-Lemma modpE p q :
-  p %% q = if lead_coef q \in GRing.unit
-    then (lead_coef q)^-(rscalp p q) *: (rmodp p q)
-    else rmodp p q.
- -
-Lemma scalpE p q :
-  scalp p q = if lead_coef q \in GRing.unit then 0%N else rscalp p q.
- -
-Lemma dvdpE p q : p %| q = rdvdp p q.
- -
-Lemma lc_expn_scalp_neq0 p q : lead_coef q ^+ scalp p q != 0.
- -
-Hint Resolve lc_expn_scalp_neq0 : core.
- -
-Variant edivp_spec (m d : {poly R}) :
-                                     nat × {poly R} × {poly R} bool Type :=
-|Redivp_spec k (q r: {poly R}) of
-  (lead_coef d ^+ k) *: m = q × d + r & lead_coef d \notin GRing.unit &
-  (d != 0 size r < size d) : edivp_spec m d (k, q, r) false
-|Fedivp_spec (q r: {poly R}) of m = q × d + r & (lead_coef d \in GRing.unit) &
-  (d != 0 size r < size d) : edivp_spec m d (0%N, q, r) true.
- -
-
- -
- There are several ways to state this fact. The most appropriate statement - might be polished in light of usage. -
-
-Lemma edivpP m d : edivp_spec m d (edivp m d) (lead_coef d \in GRing.unit).
- -
-Lemma edivp_eq d q r : size r < size d lead_coef d \in GRing.unit
-  edivp (q × d + r) d = (0%N, q, r).
- -
-Lemma divp_eq p q :
-    (lead_coef q ^+ (scalp p q)) *: p = (p %/ q) × q + (p %% q).
- -
-Lemma dvdp_eq q p :
-  (q %| p) = ((lead_coef q) ^+ (scalp p q) *: p == (p %/ q) × q).
- -
-Lemma divpK d p : d %| p p %/ d × d = ((lead_coef d) ^+ (scalp p d)) *: p.
- -
-Lemma divpKC d p : d %| p d × (p %/ d) = ((lead_coef d) ^+ (scalp p d)) *: p.
- -
-Lemma dvdpP q p :
-  reflect (exists2 cqq, cqq.1 != 0 & cqq.1 *: p = cqq.2 × q) (q %| p).
- -
-Lemma mulpK p q : q != 0
-  p × q %/ q = lead_coef q ^+ scalp (p × q) q *: p.
- -
-Lemma mulKp p q : q != 0
-  q × p %/ q = lead_coef q ^+ scalp (p × q) q *: p.
- -
-Lemma divpp p : p != 0 p %/ p = (lead_coef p ^+ scalp p p)%:P.
- -
-End WeakTheoryForIDomainPseudoDivision.
- -
-Hint Resolve lc_expn_scalp_neq0 : core.
- -
-End WeakIdomain.
- -
-Module CommonIdomain.
- -
-Import Ring ComRing UnitRing IdomainDefs WeakIdomain.
- -
-Section IDomainPseudoDivision.
- -
-Variable R : idomainType.
-Implicit Type p q r d m n : {poly R}.
- -
-Lemma scalp0 p : scalp p 0 = 0%N.
- -
-Lemma divp_small p q : size p < size q p %/ q = 0.
- -
-Lemma leq_divp p q : (size (p %/ q) size p).
- -
-Lemma div0p p : 0 %/ p = 0.
- -
-Lemma divp0 p : p %/ 0 = 0.
- -
-Lemma divp1 m : m %/ 1 = m.
- -
-Lemma modp0 p : p %% 0 = p.
- -
-Lemma mod0p p : 0 %% p = 0.
- -
-Lemma modp1 p : p %% 1 = 0.
- -
-Hint Resolve divp0 divp1 mod0p modp0 modp1 : core.
- -
-Lemma modp_small p q : size p < size q p %% q = p.
- -
-Lemma modpC p c : c != 0 p %% c%:P = 0.
- -
-Lemma modp_mull p q : (p × q) %% q = 0.
- -
-Lemma modp_mulr d p : (d × p) %% d = 0.
- -
-Lemma modpp d : d %% d = 0.
- -
-Lemma ltn_modp p q : (size (p %% q) < size q) = (q != 0).
- -
-Lemma ltn_divpl d q p : d != 0
-   (size (q %/ d) < size p) = (size q < size (p × d)).
- -
-Lemma leq_divpr d p q : d != 0
-   (size p size (q %/ d)) = (size (p × d) size q).
- -
-Lemma divpN0 d p : d != 0 (p %/ d != 0) = (size d size p).
- -
-Lemma size_divp p q : q != 0 size (p %/ q) = ((size p) - (size q).-1)%N.
- -
-Lemma ltn_modpN0 p q : q != 0 size (p %% q) < size q.
- -
-Lemma modp_mod p q : (p %% q) %% q = p %% q.
- -
-Lemma leq_modp m d : size (m %% d) size m.
- -
-Lemma dvdp0 d : d %| 0.
- -
-Hint Resolve dvdp0 : core.
- -
-Lemma dvd0p p : (0 %| p) = (p == 0).
- -
-Lemma dvd0pP p : reflect (p = 0) (0 %| p).
- -
-Lemma dvdpN0 p q : p %| q q != 0 p != 0.
- -
-Lemma dvdp1 d : (d %| 1) = ((size d) == 1%N).
- -
-Lemma dvd1p m : 1 %| m.
- -
-Lemma gtNdvdp p q : p != 0 size p < size q (q %| p) = false.
- -
-Lemma modp_eq0P p q : reflect (p %% q = 0) (q %| p).
- -
-Lemma modp_eq0 p q : (q %| p) p %% q = 0.
- -
-Lemma leq_divpl d p q :
-  d %| p (size (p %/ d) size q) = (size p size (q × d)).
- -
-Lemma dvdp_leq p q : q != 0 p %| q size p size q.
- -
-Lemma eq_dvdp c quo q p : c != 0 c *: p = quo × q q %| p.
- -
-Lemma dvdpp d : d %| d.
- -
-Hint Resolve dvdpp : core.
- -
-Lemma divp_dvd p q : (p %| q) ((q %/ p) %| q).
- -
-Lemma dvdp_mull m d n : d %| n d %| m × n.
- -
-Lemma dvdp_mulr n d m : d %| m d %| m × n.
- -
-Hint Resolve dvdp_mull dvdp_mulr : core.
- -
-Lemma dvdp_mul d1 d2 m1 m2 : d1 %| m1 d2 %| m2 d1 × d2 %| m1 × m2.
- -
-Lemma dvdp_addr m d n : d %| m (d %| m + n) = (d %| n).
- -
-Lemma dvdp_addl n d m : d %| n (d %| m + n) = (d %| m).
- -
-Lemma dvdp_add d m n : d %| m d %| n d %| m + n.
- -
-Lemma dvdp_add_eq d m n : d %| m + n (d %| m) = (d %| n).
- -
-Lemma dvdp_subr d m n : d %| m (d %| m - n) = (d %| n).
- -
-Lemma dvdp_subl d m n : d %| n (d %| m - n) = (d %| m).
- -
-Lemma dvdp_sub d m n : d %| m d %| n d %| m - n.
- -
-Lemma dvdp_mod d n m : d %| n (d %| m) = (d %| m %% n).
- -
-Lemma dvdp_trans : transitive (@dvdp R).
- -
-Lemma dvdp_mulIl p q : p %| p × q.
- -
-Lemma dvdp_mulIr p q : q %| p × q.
- -
-Lemma dvdp_mul2r r p q : r != 0 (p × r %| q × r) = (p %| q).
- -
-Lemma dvdp_mul2l r p q: r != 0 (r × p %| r × q) = (p %| q).
- -
-Lemma ltn_divpr d p q :
-  d %| q (size p < size (q %/ d)) = (size (p × d) < size q).
- -
-Lemma dvdp_exp d k p : 0 < k d %| p d %| (p ^+ k).
- -
-Lemma dvdp_exp2l d k l : k l d ^+ k %| d ^+ l.
- -
-Lemma dvdp_Pexp2l d k l : 1 < size d (d ^+ k %| d ^+ l) = (k l).
- -
-Lemma dvdp_exp2r p q k : p %| q p ^+ k %| q ^+ k.
- -
-Lemma dvdp_exp_sub p q k l: p != 0
-  (p ^+ k %| q × p ^+ l) = (p ^+ (k - l) %| q).
- -
-Lemma dvdp_XsubCl p x : ('X - x%:P) %| p = root p x.
- -
-Lemma polyXsubCP p x : reflect (p.[x] = 0) (('X - x%:P) %| p).
- -
-Lemma eqp_div_XsubC p c :
-  (p == (p %/ ('X - c%:P)) × ('X - c%:P)) = ('X - c%:P %| p).
- -
-Lemma root_factor_theorem p x : root p x = (('X - x%:P) %| p).
- -
-Lemma uniq_roots_dvdp p rs : all (root p) rs uniq_roots rs
-  (\prod_(z <- rs) ('X - z%:P)) %| p.
- -
-Lemma root_bigmul : x (ps : seq {poly R}),
-  ~~root (\big[*%R/1]_(p <- ps) p) x = all (fun p~~ root p x) ps.
- -
-Lemma eqpP m n :
-  reflect (exists2 c12, (c12.1 != 0) && (c12.2 != 0) & c12.1 *: m = c12.2 *: n)
-          (m %= n).
- -
-Lemma eqp_eq p q: p %= q (lead_coef q) *: p = (lead_coef p) *: q.
- -
-Lemma eqpxx : reflexive (@eqp R).
- -
-Hint Resolve eqpxx : core.
- -
-Lemma eqp_sym : symmetric (@eqp R).
- -
-Lemma eqp_trans : transitive (@eqp R).
- -
-Lemma eqp_ltrans : left_transitive (@eqp R).
- -
-Lemma eqp_rtrans : right_transitive (@eqp R).
- -
-Lemma eqp0 : p, (p %= 0) = (p == 0).
- -
-Lemma eqp01 : 0 %= (1 : {poly R}) = false.
- -
-Lemma eqp_scale p c : c != 0 c *: p %= p.
- -
-Lemma eqp_size p q : p %= q size p = size q.
- -
-Lemma size_poly_eq1 p : (size p == 1%N) = (p %= 1).
- -
-Lemma polyXsubC_eqp1 (x : R) : ('X - x%:P %= 1) = false.
- -
-Lemma dvdp_eqp1 p q : p %| q q %= 1 p %= 1.
- -
-Lemma eqp_dvdr q p d: p %= q d %| p = (d %| q).
- -
-Lemma eqp_dvdl d2 d1 p : d1 %= d2 d1 %| p = (d2 %| p).
- -
-Lemma dvdp_scaler c m n : c != 0 m %| c *: n = (m %| n).
- -
-Lemma dvdp_scalel c m n : c != 0 (c *: m %| n) = (m %| n).
- -
-Lemma dvdp_opp d p : d %| (- p) = (d %| p).
- -
-Lemma eqp_mul2r r p q : r != 0 (p × r %= q × r) = (p %= q).
- -
-Lemma eqp_mul2l r p q: r != 0 (r × p %= r × q) = (p %= q).
- -
-Lemma eqp_mull r p q: (q %= r) (p × q %= p × r).
- -
-Lemma eqp_mulr q p r : (p %= q) (p × r %= q × r).
- -
-Lemma eqp_exp p q k : p %= q p ^+ k %= q ^+ k.
- -
-Lemma polyC_eqp1 (c : R) : (c%:P %= 1) = (c != 0).
- -
-Lemma dvdUp d p: d %= 1 d %| p.
- -
-Lemma dvdp_size_eqp p q : p %| q size p == size q = (p %= q).
- -
-Lemma eqp_root p q : p %= q root p =1 root q.
- -
-Lemma eqp_rmod_mod p q : rmodp p q %= modp p q.
- -
-Lemma eqp_rdiv_div p q : rdivp p q %= divp p q.
- -
-Lemma dvd_eqp_divl d p q (dvd_dp : d %| q) (eq_pq : p %= q) :
-  p %/ d %= q %/ d.
- -
-Definition gcdp_rec p q :=
-  let: (p1, q1) := if size p < size q then (q, p) else (p, q) in
-  if p1 == 0 then q1 else
-  let fix loop (n : nat) (pp qq : {poly R}) {struct n} :=
-      let rr := modp pp qq in
-      if rr == 0 then qq else
-      if n is n1.+1 then loop n1 qq rr else rr in
-  loop (size p1) p1 q1.
- -
-Definition gcdp := nosimpl gcdp_rec.
- -
-Lemma gcd0p : left_id 0 gcdp.
- -
-Lemma gcdp0 : right_id 0 gcdp.
- -
-Lemma gcdpE p q :
-  gcdp p q = if size p < size q
-    then gcdp (modp q p) p else gcdp (modp p q) q.
- -
-Lemma size_gcd1p p : size (gcdp 1 p) = 1%N.
- -
-Lemma size_gcdp1 p : size (gcdp p 1) = 1%N.
- -
-Lemma gcdpp : idempotent gcdp.
- -
-Lemma dvdp_gcdlr p q : (gcdp p q %| p) && (gcdp p q %| q).
- -
-Lemma dvdp_gcdl p q : gcdp p q %| p.
- -
-Lemma dvdp_gcdr p q :gcdp p q %| q.
- -
-Lemma leq_gcdpl p q : p != 0 size (gcdp p q) size p.
- -
-Lemma leq_gcdpr p q : q != 0 size (gcdp p q) size q.
- -
-Lemma dvdp_gcd p m n : p %| gcdp m n = (p %| m) && (p %| n).
- -
-Lemma gcdpC : p q, gcdp p q %= gcdp q p.
- -
-Lemma gcd1p p : gcdp 1 p %= 1.
- -
-Lemma gcdp1 p : gcdp p 1 %= 1.
- -
-Lemma gcdp_addl_mul p q r: gcdp r (p × r + q) %= gcdp r q.
- -
-Lemma gcdp_addl m n : gcdp m (m + n) %= gcdp m n.
- -
-Lemma gcdp_addr m n : gcdp m (n + m) %= gcdp m n.
- -
-Lemma gcdp_mull m n : gcdp n (m × n) %= n.
- -
-Lemma gcdp_mulr m n : gcdp n (n × m) %= n.
- -
-Lemma gcdp_scalel c m n : c != 0 gcdp (c *: m) n %= gcdp m n.
- -
-Lemma gcdp_scaler c m n : c != 0 gcdp m (c *: n) %= gcdp m n.
- -
-Lemma dvdp_gcd_idl m n : m %| n gcdp m n %= m.
- -
-Lemma dvdp_gcd_idr m n : n %| m gcdp m n %= n.
- -
-Lemma gcdp_exp p k l : gcdp (p ^+ k) (p ^+ l) %= p ^+ minn k l.
- -
-Lemma gcdp_eq0 p q : gcdp p q == 0 = (p == 0) && (q == 0).
- -
-Lemma eqp_gcdr p q r : q %= r gcdp p q %= gcdp p r.
- -
-Lemma eqp_gcdl r p q : p %= q gcdp p r %= gcdp q r.
- -
-Lemma eqp_gcd p1 p2 q1 q2 : p1 %= p2 q1 %= q2 gcdp p1 q1 %= gcdp p2 q2.
- -
-Lemma eqp_rgcd_gcd p q : rgcdp p q %= gcdp p q.
- -
-Lemma gcdp_modr m n : gcdp m (n %% m) %= gcdp m n.
- -
-Lemma gcdp_modl m n : gcdp (m %% n) n %= gcdp m n.
- -
-Lemma gcdp_def d m n :
-    d %| m d %| n ( d', d' %| m d' %| n d' %| d)
-  gcdp m n %= d.
- -
-Definition coprimep p q := size (gcdp p q) == 1%N.
- -
-Lemma coprimep_size_gcd p q : coprimep p q size (gcdp p q) = 1%N.
- -
-Lemma coprimep_def p q : (coprimep p q) = (size (gcdp p q) == 1%N).
- -
-Lemma coprimep_scalel c m n :
-  c != 0 coprimep (c *: m) n = coprimep m n.
- -
-Lemma coprimep_scaler c m n:
-  c != 0 coprimep m (c *: n) = coprimep m n.
- -
-Lemma coprimepp p : coprimep p p = (size p == 1%N).
- -
-Lemma gcdp_eqp1 p q : gcdp p q %= 1 = (coprimep p q).
- -
-Lemma coprimep_sym p q : coprimep p q = coprimep q p.
- -
-Lemma coprime1p p : coprimep 1 p.
- -
-Lemma coprimep1 p : coprimep p 1.
- -
-Lemma coprimep0 p : coprimep p 0 = (p %= 1).
- -
-Lemma coprime0p p : coprimep 0 p = (p %= 1).
- -
-
- -
- This is different from coprimeP in div. shall we keep this? -
-
-Lemma coprimepP p q :
reflect ( d, d %| p d %| q d %= 1) (coprimep p q).
- -
-Lemma coprimepPn p q : p != 0
-  reflect ( d, (d %| gcdp p q) && ~~ (d %= 1)) (~~ coprimep p q).
- -
-Lemma coprimep_dvdl q p r : r %| q coprimep p q coprimep p r.
- -
-Lemma coprimep_dvdr p q r :
-  r %| p coprimep p q coprimep r q.
- -
-Lemma coprimep_modl p q : coprimep (p %% q) q = coprimep p q.
- -
-Lemma coprimep_modr q p : coprimep q (p %% q) = coprimep q p.
- -
-Lemma rcoprimep_coprimep q p : rcoprimep q p = coprimep q p.
- -
-Lemma eqp_coprimepr p q r : q %= r coprimep p q = coprimep p r.
- -
-Lemma eqp_coprimepl p q r : q %= r coprimep q p = coprimep r p.
- -
-
- -
- This should be implemented with an extended remainder sequence -
-
-Fixpoint egcdp_rec p q k {struct k} : {poly R} × {poly R} :=
-  if k is k'.+1 then
-    if q == 0 then (1, 0) else
-    let: (u, v) := egcdp_rec q (p %% q) k' in
-      (lead_coef q ^+ scalp p q *: v, (u - v × (p %/ q)))
-  else (1, 0).
- -
-Definition egcdp p q :=
-  if size q size p then egcdp_rec p q (size q)
-    else let e := egcdp_rec q p (size p) in (e.2, e.1).
- -
-
- -
- No provable egcd0p -
-
-Lemma egcdp0 p : egcdp p 0 = (1, 0).
- -
-Lemma egcdp_recP : k p q, q != 0 size q k size q size p
-  let e := (egcdp_rec p q k) in
-    [/\ size e.1 size q, size e.2 size p & gcdp p q %= e.1 × p + e.2 × q].
- -
-Lemma egcdpP p q : p != 0 q != 0 (e := egcdp p q),
-  [/\ size e.1 size q, size e.2 size p & gcdp p q %= e.1 × p + e.2 × q].
- -
-Lemma egcdpE p q (e := egcdp p q) : gcdp p q %= e.1 × p + e.2 × q.
- -
-Lemma Bezoutp p q : u, u.1 × p + u.2 × q %= (gcdp p q).
- -
-Lemma Bezout_coprimepP : p q,
-  reflect ( u, u.1 × p + u.2 × q %= 1) (coprimep p q).
- -
-Lemma coprimep_root p q x : coprimep p q root p x q.[x] != 0.
- -
-Lemma Gauss_dvdpl p q d: coprimep d q (d %| p × q) = (d %| p).
- -
-Lemma Gauss_dvdpr p q d: coprimep d q (d %| q × p) = (d %| p).
- -
-
- -
- This could be simplified with the introduction of lcmp -
-
-Lemma Gauss_dvdp m n p : coprimep m n (m × n %| p) = (m %| p) && (n %| p).
- -
-Lemma Gauss_gcdpr p m n : coprimep p m gcdp p (m × n) %= gcdp p n.
- -
-Lemma Gauss_gcdpl p m n : coprimep p n gcdp p (m × n) %= gcdp p m.
- -
-Lemma coprimep_mulr p q r : coprimep p (q × r) = (coprimep p q && coprimep p r).
- -
-Lemma coprimep_mull p q r: coprimep (q × r) p = (coprimep q p && coprimep r p).
- -
-Lemma modp_coprime k u n : k != 0 (k × u) %% n %= 1 coprimep k n.
- -
-Lemma coprimep_pexpl k m n : 0 < k coprimep (m ^+ k) n = coprimep m n.
- -
-Lemma coprimep_pexpr k m n : 0 < k coprimep m (n ^+ k) = coprimep m n.
- -
-Lemma coprimep_expl k m n : coprimep m n coprimep (m ^+ k) n.
- -
-Lemma coprimep_expr k m n : coprimep m n coprimep m (n ^+ k).
- -
-Lemma gcdp_mul2l p q r : gcdp (p × q) (p × r) %= (p × gcdp q r).
- -
-Lemma gcdp_mul2r q r p : gcdp (q × p) (r × p) %= (gcdp q r × p).
- -
-Lemma mulp_gcdr p q r : r × (gcdp p q) %= gcdp (r × p) (r × q).
- -
-Lemma mulp_gcdl p q r : (gcdp p q) × r %= gcdp (p × r) (q × r).
- -
-Lemma coprimep_div_gcd p q : (p != 0) || (q != 0)
-  coprimep (p %/ (gcdp p q)) (q %/ gcdp p q).
- -
-Lemma divp_eq0 p q : (p %/ q == 0) = [|| p == 0, q ==0 | size p < size q].
- -
-Lemma dvdp_div_eq0 p q : q %| p (p %/ q == 0) = (p == 0).
- -
-Lemma Bezout_coprimepPn p q : p != 0 q != 0
-  reflect (exists2 uv : {poly R} × {poly R},
-    (0 < size uv.1 < size q) && (0 < size uv.2 < size p) &
-      uv.1 × p = uv.2 × q)
-    (~~ (coprimep p q)).
- -
-Lemma dvdp_pexp2r m n k : k > 0 (m ^+ k %| n ^+ k) = (m %| n).
- -
-Lemma root_gcd p q x : root (gcdp p q) x = root p x && root q x.
- -
-Lemma root_biggcd : x (ps : seq {poly R}),
-  root (\big[gcdp/0]_(p <- ps) p) x = all (fun proot p x) ps.
- -
-
- -
- "gdcop Q P" is the Greatest Divisor of P which is coprime to Q - if P null, we pose that gdcop returns 1 if Q null, 0 otherwise -
-
-Fixpoint gdcop_rec q p k :=
-  if k is m.+1 then
-      if coprimep p q then p
-        else gdcop_rec q (divp p (gcdp p q)) m
-    else (q == 0)%:R.
- -
-Definition gdcop q p := gdcop_rec q p (size p).
- -
-Variant gdcop_spec q p : {poly R} Type :=
-  GdcopSpec r of (dvdp r p) & ((coprimep r q) || (p == 0))
-  & ( d, dvdp d p coprimep d q dvdp d r)
-  : gdcop_spec q p r.
- -
-Lemma gdcop0 q : gdcop q 0 = (q == 0)%:R.
- -
-Lemma gdcop_recP : q p k,
-  size p k gdcop_spec q p (gdcop_rec q p k).
- -
-Lemma gdcopP q p : gdcop_spec q p (gdcop q p).
- -
-Lemma coprimep_gdco p q : (q != 0)%B coprimep (gdcop p q) p.
- -
-Lemma size2_dvdp_gdco p q d : p != 0 size d = 2%N
-  (d %| (gdcop q p)) = (d %| p) && ~~(d %| q).
- -
-Lemma dvdp_gdco p q : (gdcop p q) %| q.
- -
-Lemma root_gdco p q x : p != 0 root (gdcop q p) x = root p x && ~~(root q x).
- -
-Lemma dvdp_comp_poly r p q : (p %| q) (p \Po r) %| (q \Po r).
- -
-Lemma gcdp_comp_poly r p q : gcdp p q \Po r %= gcdp (p \Po r) (q \Po r).
- -
-Lemma coprimep_comp_poly r p q : coprimep p q coprimep (p \Po r) (q \Po r).
- -
-Lemma coprimep_addl_mul p q r : coprimep r (p × r + q) = coprimep r q.
- -
-Definition irreducible_poly p :=
-  (size p > 1) × ( q, size q != 1%N q %| p q %= p) : Prop.
- -
-Lemma irredp_neq0 p : irreducible_poly p p != 0.
- -
-Definition apply_irredp p (irr_p : irreducible_poly p) := irr_p.2.
-Coercion apply_irredp : irreducible_poly >-> Funclass.
- -
-Lemma modp_XsubC p c : p %% ('X - c%:P) = p.[c]%:P.
- -
-Lemma coprimep_XsubC p c : coprimep p ('X - c%:P) = ~~ root p c.
- -
-Lemma coprimepX p : coprimep p 'X = ~~ root p 0.
- -
-Lemma eqp_monic : {in monic &, p q, (p %= q) = (p == q)}.
- -
-Lemma dvdp_mul_XsubC p q c :
-  (p %| ('X - c%:P) × q) = ((if root p c then p %/ ('X - c%:P) else p) %| q).
- -
-Lemma dvdp_prod_XsubC (I : Type) (r : seq I) (F : I R) p :
-    p %| \prod_(i <- r) ('X - (F i)%:P)
-  {m | p %= \prod_(i <- mask m r) ('X - (F i)%:P)}.
- -
-Lemma irredp_XsubC (x : R) : irreducible_poly ('X - x%:P).
- -
-Lemma irredp_XsubCP d p :
-  irreducible_poly p d %| p {d %= 1} + {d %= p}.
- -
-End IDomainPseudoDivision.
- -
-Hint Resolve eqpxx divp0 divp1 mod0p modp0 modp1 dvdp_mull dvdp_mulr dvdpp : core.
-Hint Resolve dvdp0 : core.
- -
-End CommonIdomain.
- -
-Module Idomain.
- -
-Include IdomainDefs.
-Export IdomainDefs.
-Include WeakIdomain.
-Include CommonIdomain.
- -
-End Idomain.
- -
-Module IdomainMonic.
- -
-Import Ring ComRing UnitRing IdomainDefs Idomain.
- -
-Section MonicDivisor.
- -
-Variable R : idomainType.
-Variable q : {poly R}.
-Hypothesis monq : q \is monic.
- -
-Implicit Type p d r : {poly R}.
- -
-Lemma divpE p : p %/ q = rdivp p q.
- -
-Lemma modpE p : p %% q = rmodp p q.
- -
-Lemma scalpE p : scalp p q = 0%N.
- -
-Lemma divp_eq p : p = (p %/ q) × q + (p %% q).
- -
-Lemma divpp p : q %/ q = 1.
- -
-Lemma dvdp_eq p : (q %| p) = (p == (p %/ q) × q).
- -
-Lemma dvdpP p : reflect ( qq, p = qq × q) (q %| p).
- -
-Lemma mulpK p : p × q %/ q = p.
- -
-Lemma mulKp p : q × p %/ q = p.
- -
-End MonicDivisor.
- -
-End IdomainMonic.
- -
-Module IdomainUnit.
- -
-Import Ring ComRing UnitRing IdomainDefs Idomain.
- -
-Section UnitDivisor.
- -
-Variable R : idomainType.
-Variable d : {poly R}.
- -
-Hypothesis ulcd : lead_coef d \in GRing.unit.
- -
-Implicit Type p q r : {poly R}.
- -
-Lemma divp_eq p : p = (p %/ d) × d + (p %% d).
- -
-Lemma edivpP p q r : p = q × d + r size r < size d
-  q = (p %/ d) r = p %% d.
- -
-Lemma divpP p q r : p = q × d + r size r < size d
-  q = (p %/ d).
- -
-Lemma modpP p q r : p = q × d + r size r < size d r = (p %% d).
- -
-Lemma ulc_eqpP p q : lead_coef q \is a GRing.unit
-  reflect (exists2 c : R, c != 0 & p = c *: q) (p %= q).
- -
-Lemma dvdp_eq p : (d %| p) = (p == p %/ d × d).
- -
-Lemma ucl_eqp_eq p q : lead_coef q \is a GRing.unit
-  p %= q p = (lead_coef p / lead_coef q) *: q.
- -
-Lemma modp_scalel c p : (c *: p) %% d = c *: (p %% d).
- -
-Lemma divp_scalel c p : (c *: p) %/ d = c *: (p %/ d).
- -
-Lemma eqp_modpl p q : p %= q (p %% d) %= (q %% d).
- -
-Lemma eqp_divl p q : p %= q (p %/ d) %= (q %/ d).
- -
-Lemma modp_opp p : (- p) %% d = - (p %% d).
- -
-Lemma divp_opp p : (- p) %/ d = - (p %/ d).
- -
-Lemma modp_add p q : (p + q) %% d = p %% d + q %% d.
- -
-Lemma divp_add p q : (p + q) %/ d = p %/ d + q %/ d.
- -
-Lemma mulpK q : (q × d) %/ d = q.
- -
-Lemma mulKp q : (d × q) %/ d = q.
- -
-Lemma divp_addl_mul_small q r :
-  size r < size d (q × d + r) %/ d = q.
- -
-Lemma modp_addl_mul_small q r :
-  size r < size d (q × d + r) %% d = r.
- -
-Lemma divp_addl_mul q r : (q × d + r) %/ d = q + r %/ d.
- -
-Lemma divpp : d %/ d = 1.
- -
-Lemma leq_trunc_divp m : size (m %/ d × d) size m.
- -
-Lemma dvdpP p : reflect ( q, p = q × d) (d %| p).
- -
-Lemma divpK p : d %| p p %/ d × d = p.
- -
-Lemma divpKC p : d %| p d × (p %/ d) = p.
- -
-Lemma dvdp_eq_div p q : d %| p (q == p %/ d) = (q × d == p).
- -
-Lemma dvdp_eq_mul p q : d %| p (p == q × d) = (p %/ d == q).
- -
-Lemma divp_mulA p q : d %| q p × (q %/ d) = p × q %/ d.
- -
-Lemma divp_mulAC m n : d %| m m %/ d × n = m × n %/ d.
- -
-Lemma divp_mulCA p q : d %| p d %| q p × (q %/ d) = q × (p %/ d).
- -
-Lemma modp_mul p q : (p × (q %% d)) %% d = (p × q) %% d.
- -
-End UnitDivisor.
- -
-Section MoreUnitDivisor.
- -
-Variable R : idomainType.
-Variable d : {poly R}.
-Hypothesis ulcd : lead_coef d \in GRing.unit.
- -
-Implicit Types p q : {poly R}.
- -
-Lemma expp_sub m n : n m (d ^+ (m - n))%N = d ^+ m %/ d ^+ n.
- -
-Lemma divp_pmul2l p q : lead_coef q \in GRing.unit d × p %/ (d × q) = p %/ q.
- -
-Lemma divp_pmul2r p q :
-  lead_coef p \in GRing.unit q × d %/ (p × d) = q %/ p.
- -
-Lemma divp_divl r p q :
-    lead_coef r \in GRing.unit lead_coef p \in GRing.unit
-  q %/ p %/ r = q %/ (p × r).
- -
-Lemma divpAC p q : lead_coef p \in GRing.unit q %/ d %/ p = q %/ p %/ d.
- -
-Lemma modp_scaler c p : c \in GRing.unit p %% (c *: d) = (p %% d).
- -
-Lemma divp_scaler c p : c \in GRing.unit p %/ (c *: d) = c^-1 *: (p %/ d).
- -
-End MoreUnitDivisor.
- -
-End IdomainUnit.
- -
-Module Field.
- -
-Import Ring ComRing UnitRing.
-Include IdomainDefs.
-Export IdomainDefs.
-Include CommonIdomain.
- -
-Section FieldDivision.
- -
-Variable F : fieldType.
- -
-Implicit Type p q r d : {poly F}.
- -
-Lemma divp_eq p q : p = (p %/ q) × q + (p %% q).
- -
-Lemma divp_modpP p q d r : p = q × d + r size r < size d
-  q = (p %/ d) r = p %% d.
- -
-Lemma divpP p q d r : p = q × d + r size r < size d
-  q = (p %/ d).
- -
-Lemma modpP p q d r : p = q × d + r size r < size d r = (p %% d).
- -
-Lemma eqpfP p q : p %= q p = (lead_coef p / lead_coef q) *: q.
- -
-Lemma dvdp_eq q p : (q %| p) = (p == p %/ q × q).
- -
-Lemma eqpf_eq p q : reflect (exists2 c, c != 0 & p = c *: q) (p %= q).
- -
-Lemma modp_scalel c p q : (c *: p) %% q = c *: (p %% q).
- -
-Lemma mulpK p q : q != 0 p × q %/ q = p.
- -
-Lemma mulKp p q : q != 0 q × p %/ q = p.
- -
-Lemma divp_scalel c p q : (c *: p) %/ q = c *: (p %/ q).
- -
-Lemma modp_scaler c p d : c != 0 p %% (c *: d) = (p %% d).
- -
-Lemma divp_scaler c p d : c != 0 p %/ (c *: d) = c^-1 *: (p %/ d).
- -
-Lemma eqp_modpl d p q : p %= q (p %% d) %= (q %% d).
- -
-Lemma eqp_divl d p q : p %= q (p %/ d) %= (q %/ d).
- -
-Lemma eqp_modpr d p q : p %= q (d %% p) %= (d %% q).
- -
-Lemma eqp_mod p1 p2 q1 q2 : p1 %= p2 q1 %= q2 p1 %% q1 %= p2 %% q2.
- -
-Lemma eqp_divr (d m n : {poly F}) : m %= n (d %/ m) %= (d %/ n).
- -
-Lemma eqp_div p1 p2 q1 q2 : p1 %= p2 q1 %= q2 p1 %/ q1 %= p2 %/ q2.
- -
-Lemma eqp_gdcor p q r : q %= r gdcop p q %= gdcop p r.
- -
-Lemma eqp_gdcol p q r : q %= r gdcop q p %= gdcop r p.
- -
-Lemma eqp_rgdco_gdco q p : rgdcop q p %= gdcop q p.
- -
-Lemma modp_opp p q : (- p) %% q = - (p %% q).
- -
-Lemma divp_opp p q : (- p) %/ q = - (p %/ q).
- -
-Lemma modp_add d p q : (p + q) %% d = p %% d + q %% d.
- -
-Lemma modNp p q : (- p) %% q = - (p %% q).
- -
-Lemma divp_add d p q : (p + q) %/ d = p %/ d + q %/ d.
- -
-Lemma divp_addl_mul_small d q r :
-  size r < size d (q × d + r) %/ d = q.
- -
-Lemma modp_addl_mul_small d q r :
-  size r < size d (q × d + r) %% d = r.
- -
-Lemma divp_addl_mul d q r : d != 0 (q × d + r) %/ d = q + r %/ d.
- -
-Lemma divpp d : d != 0 d %/ d = 1.
- -
-Lemma leq_trunc_divp d m : size (m %/ d × d) size m.
- -
-Lemma divpK d p : d %| p p %/ d × d = p.
- -
-Lemma divpKC d p : d %| p d × (p %/ d) = p.
- -
-Lemma dvdp_eq_div d p q : d != 0 d %| p (q == p %/ d) = (q × d == p).
- -
-Lemma dvdp_eq_mul d p q : d != 0 d %| p (p == q × d) = (p %/ d == q).
- -
-Lemma divp_mulA d p q : d %| q p × (q %/ d) = p × q %/ d.
- -
-Lemma divp_mulAC d m n : d %| m m %/ d × n = m × n %/ d.
- -
-Lemma divp_mulCA d p q : d %| p d %| q p × (q %/ d) = q × (p %/ d).
- -
-Lemma expp_sub d m n : d != 0 m n (d ^+ (m - n))%N = d ^+ m %/ d ^+ n.
- -
-Lemma divp_pmul2l d q p : d != 0 q != 0 d × p %/ (d × q) = p %/ q.
- -
-Lemma divp_pmul2r d p q : d != 0 p != 0 q × d %/ (p × d) = q %/ p.
- -
-Lemma divp_divl r p q : q %/ p %/ r = q %/ (p × r).
- -
-Lemma divpAC d p q : q %/ d %/ p = q %/ p %/ d.
- -
-Lemma edivp_def p q : edivp p q = (0%N, p %/ q, p %% q).
- -
-Lemma divpE p q : p %/ q = (lead_coef q)^-(rscalp p q) *: (rdivp p q).
- -
-Lemma modpE p q : p %% q = (lead_coef q)^-(rscalp p q) *: (rmodp p q).
- -
-Lemma scalpE p q : scalp p q = 0%N.
- -
-
- -
- Just to have it without importing the weak theory -
-
-Lemma dvdpE p q : p %| q = rdvdp p q.
- -
-Variant edivp_spec m d : nat × {poly F} × {poly F} Type :=
-  EdivpSpec n q r of
-  m = q × d + r & (d != 0) ==> (size r < size d) : edivp_spec m d (n, q, r).
- -
-Lemma edivpP m d : edivp_spec m d (edivp m d).
- -
-Lemma edivp_eq d q r : size r < size d edivp (q × d + r) d = (0%N, q, r).
- -
-Lemma modp_mul p q m : (p × (q %% m)) %% m = (p × q) %% m.
- -
-Lemma dvdpP p q : reflect ( qq, p = qq × q) (q %| p).
- -
-Lemma Bezout_eq1_coprimepP : p q,
-  reflect ( u, u.1 × p + u.2 × q = 1) (coprimep p q).
- -
-Lemma dvdp_gdcor p q : q != 0 p %| (gdcop q p) × (q ^+ size p).
- -
-Lemma reducible_cubic_root p q :
-  size p 4 1 < size q < size p q %| p {r | root p r}.
- -
-Lemma cubic_irreducible p :
-  1 < size p 4 ( x, ~~ root p x) irreducible_poly p.
- -
-Section FieldRingMap.
- -
-Variable rR : ringType.
- -
-Variable f : {rmorphism F rR}.
- -
-Implicit Type a b : {poly F}.
- -
-Lemma redivp_map a b :
-  redivp a^f b^f = (rscalp a b, (rdivp a b)^f, (rmodp a b)^f).
- -
-End FieldRingMap.
- -
-Section FieldMap.
- -
-Variable rR : idomainType.
- -
-Variable f : {rmorphism F rR}.
- -
-Implicit Type a b : {poly F}.
- -
-Lemma edivp_map a b :
-  edivp a^f b^f = (0%N, (a %/ b)^f, (a %% b)^f).
- -
-Lemma scalp_map p q : scalp p^f q^f = scalp p q.
- -
-Lemma map_divp p q : (p %/ q)^f = p^f %/ q^f.
- -
-Lemma map_modp p q : (p %% q)^f = p^f %% q^f.
- -
-Lemma egcdp_map p q :
-  egcdp (map_poly f p) (map_poly f q)
-     = (map_poly f (egcdp p q).1, map_poly f (egcdp p q).2).
- -
-Lemma dvdp_map p q : (p^f %| q^f) = (p %| q).
- -
-Lemma eqp_map p q : (p^f %= q^f) = (p %= q).
- -
-Lemma gcdp_map p q : (gcdp p q)^f = gcdp p^f q^f.
- -
-Lemma coprimep_map p q : coprimep p^f q^f = coprimep p q.
- -
-Lemma gdcop_rec_map p q n : (gdcop_rec p q n)^f = (gdcop_rec p^f q^f n).
- -
-Lemma gdcop_map p q : (gdcop p q)^f = (gdcop p^f q^f).
- -
-End FieldMap.
- -
-End FieldDivision.
- -
-End Field.
- -
-Module ClosedField.
- -
-Import Field.
- -
-Section closed.
- -
-Variable F : closedFieldType.
- -
-Lemma root_coprimep (p q : {poly F}):
-  ( x, root p x q.[x] != 0) coprimep p q.
- -
-Lemma coprimepP (p q : {poly F}):
-  reflect ( x, root p x q.[x] != 0) (coprimep p q).
- -
-End closed.
- -
-End ClosedField.
- -
-End Pdiv.
- -
-Export Pdiv.Field.
-
-
- - - -
- - - \ No newline at end of file -- cgit v1.2.3