Library mathcomp.algebra.polydiv
- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.
- Distributed under the terms of CeCILL-B. *)
- -
-
-
-- Distributed under the terms of CeCILL-B. *)
- -
-
- This file provides a library for the basic theory of Euclidean and pseudo-
- Euclidean division for polynomials over ring structures.
- The library defines two versions of the pseudo-euclidean division: one for
- coefficients in a (not necessarily commutative) ring structure and one for
- coefficients equipped with a structure of integral domain. From the latter
- we derive the definition of the usual Euclidean division for coefficients
- in a field. Only the definition of the pseudo-division for coefficients in
- an integral domain is exported by default and benefits from notations.
- Also, the only theory exported by default is the one of division for
- polynomials with coefficients in a field.
- Other definitions and facts are qualified using name spaces indicating the
- hypotheses made on the structure of coefficients and the properties of the
- polynomial one divides with.
-
-
-
- Pdiv.Field (exported by the present library):
- edivp p q == pseudo-division of p by q with p q : {poly R} where
- R is an idomainType.
- Computes (k, quo, rem) : nat * {poly r} * {poly R},
- such that size rem < size q and:
- + if lead_coef q is not a unit, then:
- (lead_coef q ^+ k) *: p = q * quo + rem
- + else if lead_coef q is a unit, then:
- p = q * quo + rem and k = 0
- p %/ q == quotient (second component) computed by (edivp p q).
- p %% q == remainder (third component) computed by (edivp p q).
- scalp p q == exponent (first component) computed by (edivp p q).
- p %| q == tests the nullity of the remainder of the
- pseudo-division of p by q.
- rgcdp p q == Pseudo-greater common divisor obtained by performing
- the Euclidean algorithm on p and q using redivp as
- Euclidean division.
- p %= q == p and q are associate polynomials, i.e., p %| q and
- q %| p, or equivalently, p = c *: q for some nonzero
- constant c.
- gcdp p q == Pseudo-greater common divisor obtained by performing
- the Euclidean algorithm on p and q using edivp as
- Euclidean division.
- egcdp p q == The pair of Bezout coefficients: if e := egcdp p q,
- then size e.1 <= size q, size e.2 <= size p, and
- gcdp p q %= e.1 * p + e.2 * q
- coprimep p q == p and q are coprime, i.e., (gcdp p q) is a nonzero
- constant.
- gdcop q p == greatest divisor of p which is coprime to q.
- irreducible_poly p <-> p has only trivial (constant) divisors.
-
-
-
- Pdiv.Idomain: theory available for edivp and the related operation under
- the sole assumption that the ring of coefficients is canonically an
- integral domain (R : idomainType).
-
-
-
- Pdiv.IdomainMonic: theory available for edivp and the related operations
- under the assumption that the ring of coefficients is canonically
- and integral domain (R : idomainType) an the divisor is monic.
-
-
-
- Pdiv.IdomainUnit: theory available for edivp and the related operations
- under the assumption that the ring of coefficients is canonically an
- integral domain (R : idomainType) and the leading coefficient of the
- divisor is a unit.
-
-
-
- Pdiv.ClosedField: theory available for edivp and the related operation
- under the sole assumption that the ring of coefficients is canonically
- an algebraically closed field (R : closedField).
-
-
-
- Pdiv.Ring :
- redivp p q == pseudo-division of p by q with p q : {poly R} where R is
- a ringType.
- Computes (k, quo, rem) : nat * {poly r} * {poly R},
- such that if rem = 0 then quo * q = p * (lead_coef q ^+ k)
-
-
-
- rdivp p q == quotient (second component) computed by (redivp p q).
- rmodp p q == remainder (third component) computed by (redivp p q).
- rscalp p q == exponent (first component) computed by (redivp p q).
- rdvdp p q == tests the nullity of the remainder of the pseudo-division
- of p by q.
- rgcdp p q == analogue of gcdp for coefficients in a ringType.
- rgdcop p q == analogue of gdcop for coefficients in a ringType.
-rcoprimep p q == analogue of coprimep p q for coefficients in a ringType.
-
-
-
- Pdiv.RingComRreg : theory of the operations defined in Pdiv.Ring, when the
- ring of coefficients is canonically commutative (R : comRingType) and
- the leading coefficient of the divisor is both right regular and
- commutes as a constant polynomial with the divisor itself
-
-
-
- Pdiv.RingMonic : theory of the operations defined in Pdiv.Ring, under the
- assumption that the divisor is monic.
-
-
-
- Pdiv.UnitRing: theory of the operations defined in Pdiv.Ring, when the
- ring R of coefficients is canonically with units (R : unitRingType).
-
-
-
-
-
-Set Implicit Arguments.
- -
-Import GRing.Theory.
-Local Open Scope ring_scope.
- -
-Reserved Notation "p %= q" (at level 70, no associativity).
- -
- -
-Module Pdiv.
- -
-Module CommonRing.
- -
-Section RingPseudoDivision.
- -
-Variable R : ringType.
-Implicit Types d p q r : {poly R}.
- -
-
-
--Set Implicit Arguments.
- -
-Import GRing.Theory.
-Local Open Scope ring_scope.
- -
-Reserved Notation "p %= q" (at level 70, no associativity).
- -
- -
-Module Pdiv.
- -
-Module CommonRing.
- -
-Section RingPseudoDivision.
- -
-Variable R : ringType.
-Implicit Types d p q r : {poly R}.
- -
-
- Pseudo division, defined on an arbitrary ring
-
-
-Definition redivp_rec (q : {poly R}) :=
- let sq := size q in
- let cq := lead_coef q in
- fix loop (k : nat) (qq r : {poly R})(n : nat) {struct n} :=
- if size r < sq then (k, qq, r) else
- let m := (lead_coef r) *: 'X^(size r - sq) in
- let qq1 := qq × cq%:P + m in
- let r1 := r × cq%:P - m × q in
- if n is n1.+1 then loop k.+1 qq1 r1 n1 else (k.+1, qq1, r1).
- -
-Definition redivp_expanded_def p q :=
- if q == 0 then (0%N, 0, p) else redivp_rec q 0 0 p (size p).
-Fact redivp_key : unit.
-Definition redivp : {poly R} → {poly R} → nat × {poly R} × {poly R} :=
- locked_with redivp_key redivp_expanded_def.
-Canonical redivp_unlockable := [unlockable fun redivp].
- -
-Definition rdivp p q := ((redivp p q).1).2.
-Definition rmodp p q := (redivp p q).2.
-Definition rscalp p q := ((redivp p q).1).1.
-Definition rdvdp p q := rmodp q p == 0.
-
-
-- let sq := size q in
- let cq := lead_coef q in
- fix loop (k : nat) (qq r : {poly R})(n : nat) {struct n} :=
- if size r < sq then (k, qq, r) else
- let m := (lead_coef r) *: 'X^(size r - sq) in
- let qq1 := qq × cq%:P + m in
- let r1 := r × cq%:P - m × q in
- if n is n1.+1 then loop k.+1 qq1 r1 n1 else (k.+1, qq1, r1).
- -
-Definition redivp_expanded_def p q :=
- if q == 0 then (0%N, 0, p) else redivp_rec q 0 0 p (size p).
-Fact redivp_key : unit.
-Definition redivp : {poly R} → {poly R} → nat × {poly R} × {poly R} :=
- locked_with redivp_key redivp_expanded_def.
-Canonical redivp_unlockable := [unlockable fun redivp].
- -
-Definition rdivp p q := ((redivp p q).1).2.
-Definition rmodp p q := (redivp p q).2.
-Definition rscalp p q := ((redivp p q).1).1.
-Definition rdvdp p q := rmodp q p == 0.
-
-Definition rmultp := [rel m d | rdvdp d m].
-
-
-Lemma redivp_def p q : redivp p q = (rscalp p q, rdivp p q, rmodp p q).
- -
-Lemma rdiv0p p : rdivp 0 p = 0.
- -
-Lemma rdivp0 p : rdivp p 0 = 0.
- -
-Lemma rdivp_small p q : size p < size q → rdivp p q = 0.
- -
-Lemma leq_rdivp p q : size (rdivp p q) ≤ size p.
- -
-Lemma rmod0p p : rmodp 0 p = 0.
- -
-Lemma rmodp0 p : rmodp p 0 = p.
- -
-Lemma rscalp_small p q : size p < size q → rscalp p q = 0%N.
- -
-Lemma ltn_rmodp p q : (size (rmodp p q) < size q) = (q != 0).
- -
-Lemma ltn_rmodpN0 p q : q != 0 → size (rmodp p q) < size q.
- -
-Lemma rmodp1 p : rmodp p 1 = 0.
- -
-Lemma rmodp_small p q : size p < size q → rmodp p q = p.
- -
-Lemma leq_rmodp m d : size (rmodp m d) ≤ size m.
- -
-Lemma rmodpC p c : c != 0 → rmodp p c%:P = 0.
- -
-Lemma rdvdp0 d : rdvdp d 0.
- -
-Lemma rdvd0p n : (rdvdp 0 n) = (n == 0).
- -
-Lemma rdvd0pP n : reflect (n = 0) (rdvdp 0 n).
- -
-Lemma rdvdpN0 p q : rdvdp p q → q != 0 → p != 0.
- -
-Lemma rdvdp1 d : (rdvdp d 1) = ((size d) == 1%N).
- -
-Lemma rdvd1p m : rdvdp 1 m.
- -
-Lemma Nrdvdp_small (n d : {poly R}) :
- n != 0 → size n < size d → (rdvdp d n) = false.
- -
-Lemma rmodp_eq0P p q : reflect (rmodp p q = 0) (rdvdp q p).
- -
-Lemma rmodp_eq0 p q : rdvdp q p → rmodp p q = 0.
- -
-Lemma rdvdp_leq p q : rdvdp p q → q != 0 → size p ≤ size q.
- -
-Definition rgcdp p q :=
- let: (p1, q1) := if size p < size q then (q, p) else (p, q) in
- if p1 == 0 then q1 else
- let fix loop (n : nat) (pp qq : {poly R}) {struct n} :=
- let rr := rmodp pp qq in
- if rr == 0 then qq else
- if n is n1.+1 then loop n1 qq rr else rr in
- loop (size p1) p1 q1.
- -
-Lemma rgcd0p : left_id 0 rgcdp.
- -
-Lemma rgcdp0 : right_id 0 rgcdp.
- -
-Lemma rgcdpE p q :
- rgcdp p q = if size p < size q
- then rgcdp (rmodp q p) p else rgcdp (rmodp p q) q.
- -
-Variant comm_redivp_spec m d : nat × {poly R} × {poly R} → Type :=
- ComEdivnSpec k (q r : {poly R}) of
- (GRing.comm d (lead_coef d)%:P → m × (lead_coef d ^+ k)%:P = q × d + r) &
- (d != 0 → size r < size d) : comm_redivp_spec m d (k, q, r).
- -
-Lemma comm_redivpP m d : comm_redivp_spec m d (redivp m d).
- -
-Lemma rmodpp p : GRing.comm p (lead_coef p)%:P → rmodp p p = 0.
- -
-Definition rcoprimep (p q : {poly R}) := size (rgcdp p q) == 1%N.
- -
-Fixpoint rgdcop_rec q p n :=
- if n is m.+1 then
- if rcoprimep p q then p
- else rgdcop_rec q (rdivp p (rgcdp p q)) m
- else (q == 0)%:R.
- -
-Definition rgdcop q p := rgdcop_rec q p (size p).
- -
-Lemma rgdcop0 q : rgdcop q 0 = (q == 0)%:R.
- -
-End RingPseudoDivision.
- -
-End CommonRing.
- -
-Module RingComRreg.
- -
-Import CommonRing.
- -
-Section ComRegDivisor.
- -
-Variable R : ringType.
-Variable d : {poly R}.
-Hypothesis Cdl : GRing.comm d (lead_coef d)%:P.
-Hypothesis Rreg : GRing.rreg (lead_coef d).
- -
-Implicit Types p q r : {poly R}.
- -
-Lemma redivp_eq q r :
- size r < size d →
- let k := (redivp (q × d + r) d).1.1 in
- let c := (lead_coef d ^+ k)%:P in
- redivp (q × d + r) d = (k, q × c, r × c).
- -
-
-
-- -
-Lemma rdiv0p p : rdivp 0 p = 0.
- -
-Lemma rdivp0 p : rdivp p 0 = 0.
- -
-Lemma rdivp_small p q : size p < size q → rdivp p q = 0.
- -
-Lemma leq_rdivp p q : size (rdivp p q) ≤ size p.
- -
-Lemma rmod0p p : rmodp 0 p = 0.
- -
-Lemma rmodp0 p : rmodp p 0 = p.
- -
-Lemma rscalp_small p q : size p < size q → rscalp p q = 0%N.
- -
-Lemma ltn_rmodp p q : (size (rmodp p q) < size q) = (q != 0).
- -
-Lemma ltn_rmodpN0 p q : q != 0 → size (rmodp p q) < size q.
- -
-Lemma rmodp1 p : rmodp p 1 = 0.
- -
-Lemma rmodp_small p q : size p < size q → rmodp p q = p.
- -
-Lemma leq_rmodp m d : size (rmodp m d) ≤ size m.
- -
-Lemma rmodpC p c : c != 0 → rmodp p c%:P = 0.
- -
-Lemma rdvdp0 d : rdvdp d 0.
- -
-Lemma rdvd0p n : (rdvdp 0 n) = (n == 0).
- -
-Lemma rdvd0pP n : reflect (n = 0) (rdvdp 0 n).
- -
-Lemma rdvdpN0 p q : rdvdp p q → q != 0 → p != 0.
- -
-Lemma rdvdp1 d : (rdvdp d 1) = ((size d) == 1%N).
- -
-Lemma rdvd1p m : rdvdp 1 m.
- -
-Lemma Nrdvdp_small (n d : {poly R}) :
- n != 0 → size n < size d → (rdvdp d n) = false.
- -
-Lemma rmodp_eq0P p q : reflect (rmodp p q = 0) (rdvdp q p).
- -
-Lemma rmodp_eq0 p q : rdvdp q p → rmodp p q = 0.
- -
-Lemma rdvdp_leq p q : rdvdp p q → q != 0 → size p ≤ size q.
- -
-Definition rgcdp p q :=
- let: (p1, q1) := if size p < size q then (q, p) else (p, q) in
- if p1 == 0 then q1 else
- let fix loop (n : nat) (pp qq : {poly R}) {struct n} :=
- let rr := rmodp pp qq in
- if rr == 0 then qq else
- if n is n1.+1 then loop n1 qq rr else rr in
- loop (size p1) p1 q1.
- -
-Lemma rgcd0p : left_id 0 rgcdp.
- -
-Lemma rgcdp0 : right_id 0 rgcdp.
- -
-Lemma rgcdpE p q :
- rgcdp p q = if size p < size q
- then rgcdp (rmodp q p) p else rgcdp (rmodp p q) q.
- -
-Variant comm_redivp_spec m d : nat × {poly R} × {poly R} → Type :=
- ComEdivnSpec k (q r : {poly R}) of
- (GRing.comm d (lead_coef d)%:P → m × (lead_coef d ^+ k)%:P = q × d + r) &
- (d != 0 → size r < size d) : comm_redivp_spec m d (k, q, r).
- -
-Lemma comm_redivpP m d : comm_redivp_spec m d (redivp m d).
- -
-Lemma rmodpp p : GRing.comm p (lead_coef p)%:P → rmodp p p = 0.
- -
-Definition rcoprimep (p q : {poly R}) := size (rgcdp p q) == 1%N.
- -
-Fixpoint rgdcop_rec q p n :=
- if n is m.+1 then
- if rcoprimep p q then p
- else rgdcop_rec q (rdivp p (rgcdp p q)) m
- else (q == 0)%:R.
- -
-Definition rgdcop q p := rgdcop_rec q p (size p).
- -
-Lemma rgdcop0 q : rgdcop q 0 = (q == 0)%:R.
- -
-End RingPseudoDivision.
- -
-End CommonRing.
- -
-Module RingComRreg.
- -
-Import CommonRing.
- -
-Section ComRegDivisor.
- -
-Variable R : ringType.
-Variable d : {poly R}.
-Hypothesis Cdl : GRing.comm d (lead_coef d)%:P.
-Hypothesis Rreg : GRing.rreg (lead_coef d).
- -
-Implicit Types p q r : {poly R}.
- -
-Lemma redivp_eq q r :
- size r < size d →
- let k := (redivp (q × d + r) d).1.1 in
- let c := (lead_coef d ^+ k)%:P in
- redivp (q × d + r) d = (k, q × c, r × c).
- -
-
- this is a bad name
-
-
-
-
- section variables impose an inconvenient order on parameters
-
-
-Lemma eq_rdvdp k q1 p:
- p × ((lead_coef d)^+ k)%:P = q1 × d → rdvdp d p.
- -
-Variant rdvdp_spec p q : {poly R} → bool → Type :=
- | Rdvdp k q1 & p × ((lead_coef q)^+ k)%:P = q1 × q : rdvdp_spec p q 0 true
- | RdvdpN & rmodp p q != 0 : rdvdp_spec p q (rmodp p q) false.
- -
-
-
-- p × ((lead_coef d)^+ k)%:P = q1 × d → rdvdp d p.
- -
-Variant rdvdp_spec p q : {poly R} → bool → Type :=
- | Rdvdp k q1 & p × ((lead_coef q)^+ k)%:P = q1 × q : rdvdp_spec p q 0 true
- | RdvdpN & rmodp p q != 0 : rdvdp_spec p q (rmodp p q) false.
- -
-
- Is that version useable ?
-
-
-
-
-Lemma rdvdp_eqP p : rdvdp_spec p d (rmodp p d) (rdvdp d p).
- -
-Lemma rdvdp_mull p : rdvdp d (p × d).
- -
-Lemma rmodp_mull p : rmodp (p × d) d = 0.
- -
-Lemma rmodpp : rmodp d d = 0.
- -
-Lemma rdivpp : rdivp d d = (lead_coef d ^+ rscalp d d)%:P.
- -
-Lemma rdvdpp : rdvdp d d.
- -
-Lemma rdivpK p : rdvdp d p →
- (rdivp p d) × d = p × (lead_coef d ^+ rscalp p d)%:P.
- -
-End ComRegDivisor.
- -
-End RingComRreg.
- -
-Module RingMonic.
- -
-Import CommonRing.
- -
-Import RingComRreg.
- -
-Section MonicDivisor.
- -
-Variable R : ringType.
-Implicit Types p q r : {poly R}.
- -
-Variable d : {poly R}.
-Hypothesis mond : d \is monic.
- -
-Lemma redivp_eq q r : size r < size d →
- let k := (redivp (q × d + r) d).1.1 in
- redivp (q × d + r) d = (k, q, r).
- -
-Lemma rdivp_eq p :
- p = (rdivp p d) × d + (rmodp p d).
- -
-Lemma rdivpp : rdivp d d = 1.
- -
-Lemma rdivp_addl_mul_small q r :
- size r < size d → rdivp (q × d + r) d = q.
- -
-Lemma rdivp_addl_mul q r : rdivp (q × d + r) d = q + rdivp r d.
- -
-Lemma rdivp_addl q r :
- rdvdp d q → rdivp (q + r) d = rdivp q d + rdivp r d.
- -
-Lemma rdivp_addr q r :
- rdvdp d r → rdivp (q + r) d = rdivp q d + rdivp r d.
- -
-Lemma rdivp_mull p : rdivp (p × d) d = p.
- -
-Lemma rmodp_mull p : rmodp (p × d) d = 0.
- -
-Lemma rmodpp : rmodp d d = 0.
- -
-Lemma rmodp_addl_mul_small q r :
- size r < size d → rmodp (q × d + r) d = r.
- -
-Lemma rmodp_add p q : rmodp (p + q) d = rmodp p d + rmodp q d.
- -
-Lemma rmodp_mulmr p q : rmodp (p × (rmodp q d)) d = rmodp (p × q) d.
- -
-Lemma rdvdpp : rdvdp d d.
- -
-
-
--Lemma rdvdp_eqP p : rdvdp_spec p d (rmodp p d) (rdvdp d p).
- -
-Lemma rdvdp_mull p : rdvdp d (p × d).
- -
-Lemma rmodp_mull p : rmodp (p × d) d = 0.
- -
-Lemma rmodpp : rmodp d d = 0.
- -
-Lemma rdivpp : rdivp d d = (lead_coef d ^+ rscalp d d)%:P.
- -
-Lemma rdvdpp : rdvdp d d.
- -
-Lemma rdivpK p : rdvdp d p →
- (rdivp p d) × d = p × (lead_coef d ^+ rscalp p d)%:P.
- -
-End ComRegDivisor.
- -
-End RingComRreg.
- -
-Module RingMonic.
- -
-Import CommonRing.
- -
-Import RingComRreg.
- -
-Section MonicDivisor.
- -
-Variable R : ringType.
-Implicit Types p q r : {poly R}.
- -
-Variable d : {poly R}.
-Hypothesis mond : d \is monic.
- -
-Lemma redivp_eq q r : size r < size d →
- let k := (redivp (q × d + r) d).1.1 in
- redivp (q × d + r) d = (k, q, r).
- -
-Lemma rdivp_eq p :
- p = (rdivp p d) × d + (rmodp p d).
- -
-Lemma rdivpp : rdivp d d = 1.
- -
-Lemma rdivp_addl_mul_small q r :
- size r < size d → rdivp (q × d + r) d = q.
- -
-Lemma rdivp_addl_mul q r : rdivp (q × d + r) d = q + rdivp r d.
- -
-Lemma rdivp_addl q r :
- rdvdp d q → rdivp (q + r) d = rdivp q d + rdivp r d.
- -
-Lemma rdivp_addr q r :
- rdvdp d r → rdivp (q + r) d = rdivp q d + rdivp r d.
- -
-Lemma rdivp_mull p : rdivp (p × d) d = p.
- -
-Lemma rmodp_mull p : rmodp (p × d) d = 0.
- -
-Lemma rmodpp : rmodp d d = 0.
- -
-Lemma rmodp_addl_mul_small q r :
- size r < size d → rmodp (q × d + r) d = r.
- -
-Lemma rmodp_add p q : rmodp (p + q) d = rmodp p d + rmodp q d.
- -
-Lemma rmodp_mulmr p q : rmodp (p × (rmodp q d)) d = rmodp (p × q) d.
- -
-Lemma rdvdpp : rdvdp d d.
- -
-
- section variables impose an inconvenient order on parameters
-
-
-Lemma eq_rdvdp q1 p : p = q1 × d → rdvdp d p.
- -
-Lemma rdvdp_mull p : rdvdp d (p × d).
- -
-Lemma rdvdpP p : reflect (∃ qq, p = qq × d) (rdvdp d p).
- -
-Lemma rdivpK p : rdvdp d p → (rdivp p d) × d = p.
- -
-End MonicDivisor.
-End RingMonic.
- -
-Module Ring.
- -
-Include CommonRing.
-Import RingMonic.
- -
-Section ExtraMonicDivisor.
- -
-Variable R : ringType.
- -
-Implicit Types d p q r : {poly R}.
- -
-Lemma rdivp1 p : rdivp p 1 = p.
- -
-Lemma rdvdp_XsubCl p x : rdvdp ('X - x%:P) p = root p x.
- -
-Lemma polyXsubCP p x : reflect (p.[x] = 0) (rdvdp ('X - x%:P) p).
- -
-Lemma root_factor_theorem p x : root p x = (rdvdp ('X - x%:P) p).
- -
-End ExtraMonicDivisor.
- -
-End Ring.
- -
-Module ComRing.
- -
-Import Ring.
- -
-Import RingComRreg.
- -
-Section CommutativeRingPseudoDivision.
- -
-Variable R : comRingType.
- -
-Implicit Types d p q m n r : {poly R}.
- -
-Variant redivp_spec (m d : {poly R}) : nat × {poly R} × {poly R} → Type :=
- EdivnSpec k (q r: {poly R}) of
- (lead_coef d ^+ k) *: m = q × d + r &
- (d != 0 → size r < size d) : redivp_spec m d (k, q, r).
- -
-Lemma redivpP m d : redivp_spec m d (redivp m d).
- -
-Lemma rdivp_eq d p :
- (lead_coef d ^+ (rscalp p d)) *: p = (rdivp p d) × d + (rmodp p d).
- -
-Lemma rdvdp_eqP d p : rdvdp_spec p d (rmodp p d) (rdvdp d p).
- -
-Lemma rdvdp_eq q p :
- (rdvdp q p) = ((lead_coef q) ^+ (rscalp p q) *: p == (rdivp p q) × q).
- -
-End CommutativeRingPseudoDivision.
- -
-End ComRing.
- -
-Module UnitRing.
- -
-Import Ring.
- -
-Section UnitRingPseudoDivision.
- -
-Variable R : unitRingType.
-Implicit Type p q r d : {poly R}.
- -
-Lemma uniq_roots_rdvdp p rs :
- all (root p) rs → uniq_roots rs →
- rdvdp (\prod_(z <- rs) ('X - z%:P)) p.
- -
-End UnitRingPseudoDivision.
- -
-End UnitRing.
- -
-Module IdomainDefs.
- -
-Import Ring.
- -
-Section IDomainPseudoDivisionDefs.
- -
-Variable R : idomainType.
-Implicit Type p q r d : {poly R}.
- -
-Definition edivp_expanded_def p q :=
- let: (k, d, r) as edvpq := redivp p q in
- if lead_coef q \in GRing.unit then
- (0%N, (lead_coef q)^-k *: d, (lead_coef q)^-k *: r)
- else edvpq.
-Fact edivp_key : unit.
-Definition edivp := locked_with edivp_key edivp_expanded_def.
-Canonical edivp_unlockable := [unlockable fun edivp].
- -
-Definition divp p q := ((edivp p q).1).2.
-Definition modp p q := (edivp p q).2.
-Definition scalp p q := ((edivp p q).1).1.
-Definition dvdp p q := modp q p == 0.
-Definition eqp p q := (dvdp p q) && (dvdp q p).
- -
-End IDomainPseudoDivisionDefs.
- -
-Notation "m %/ d" := (divp m d) : ring_scope.
-Notation "m %% d" := (modp m d) : ring_scope.
-Notation "p %| q" := (dvdp p q) : ring_scope.
-Notation "p %= q" := (eqp p q) : ring_scope.
-End IdomainDefs.
- -
-Module WeakIdomain.
- -
-Import Ring ComRing UnitRing IdomainDefs.
- -
-Section WeakTheoryForIDomainPseudoDivision.
- -
-Variable R : idomainType.
-Implicit Type p q r d : {poly R}.
- -
-Lemma edivp_def p q : edivp p q = (scalp p q, divp p q, modp p q).
- -
-Lemma edivp_redivp p q : (lead_coef q \in GRing.unit) = false →
- edivp p q = redivp p q.
- -
-Lemma divpE p q :
- p %/ q = if lead_coef q \in GRing.unit
- then (lead_coef q)^-(rscalp p q) *: (rdivp p q)
- else rdivp p q.
- -
-Lemma modpE p q :
- p %% q = if lead_coef q \in GRing.unit
- then (lead_coef q)^-(rscalp p q) *: (rmodp p q)
- else rmodp p q.
- -
-Lemma scalpE p q :
- scalp p q = if lead_coef q \in GRing.unit then 0%N else rscalp p q.
- -
-Lemma dvdpE p q : p %| q = rdvdp p q.
- -
-Lemma lc_expn_scalp_neq0 p q : lead_coef q ^+ scalp p q != 0.
- -
-Hint Resolve lc_expn_scalp_neq0 : core.
- -
-Variant edivp_spec (m d : {poly R}) :
- nat × {poly R} × {poly R} → bool → Type :=
-|Redivp_spec k (q r: {poly R}) of
- (lead_coef d ^+ k) *: m = q × d + r & lead_coef d \notin GRing.unit &
- (d != 0 → size r < size d) : edivp_spec m d (k, q, r) false
-|Fedivp_spec (q r: {poly R}) of m = q × d + r & (lead_coef d \in GRing.unit) &
- (d != 0 → size r < size d) : edivp_spec m d (0%N, q, r) true.
- -
-
-
-- -
-Lemma rdvdp_mull p : rdvdp d (p × d).
- -
-Lemma rdvdpP p : reflect (∃ qq, p = qq × d) (rdvdp d p).
- -
-Lemma rdivpK p : rdvdp d p → (rdivp p d) × d = p.
- -
-End MonicDivisor.
-End RingMonic.
- -
-Module Ring.
- -
-Include CommonRing.
-Import RingMonic.
- -
-Section ExtraMonicDivisor.
- -
-Variable R : ringType.
- -
-Implicit Types d p q r : {poly R}.
- -
-Lemma rdivp1 p : rdivp p 1 = p.
- -
-Lemma rdvdp_XsubCl p x : rdvdp ('X - x%:P) p = root p x.
- -
-Lemma polyXsubCP p x : reflect (p.[x] = 0) (rdvdp ('X - x%:P) p).
- -
-Lemma root_factor_theorem p x : root p x = (rdvdp ('X - x%:P) p).
- -
-End ExtraMonicDivisor.
- -
-End Ring.
- -
-Module ComRing.
- -
-Import Ring.
- -
-Import RingComRreg.
- -
-Section CommutativeRingPseudoDivision.
- -
-Variable R : comRingType.
- -
-Implicit Types d p q m n r : {poly R}.
- -
-Variant redivp_spec (m d : {poly R}) : nat × {poly R} × {poly R} → Type :=
- EdivnSpec k (q r: {poly R}) of
- (lead_coef d ^+ k) *: m = q × d + r &
- (d != 0 → size r < size d) : redivp_spec m d (k, q, r).
- -
-Lemma redivpP m d : redivp_spec m d (redivp m d).
- -
-Lemma rdivp_eq d p :
- (lead_coef d ^+ (rscalp p d)) *: p = (rdivp p d) × d + (rmodp p d).
- -
-Lemma rdvdp_eqP d p : rdvdp_spec p d (rmodp p d) (rdvdp d p).
- -
-Lemma rdvdp_eq q p :
- (rdvdp q p) = ((lead_coef q) ^+ (rscalp p q) *: p == (rdivp p q) × q).
- -
-End CommutativeRingPseudoDivision.
- -
-End ComRing.
- -
-Module UnitRing.
- -
-Import Ring.
- -
-Section UnitRingPseudoDivision.
- -
-Variable R : unitRingType.
-Implicit Type p q r d : {poly R}.
- -
-Lemma uniq_roots_rdvdp p rs :
- all (root p) rs → uniq_roots rs →
- rdvdp (\prod_(z <- rs) ('X - z%:P)) p.
- -
-End UnitRingPseudoDivision.
- -
-End UnitRing.
- -
-Module IdomainDefs.
- -
-Import Ring.
- -
-Section IDomainPseudoDivisionDefs.
- -
-Variable R : idomainType.
-Implicit Type p q r d : {poly R}.
- -
-Definition edivp_expanded_def p q :=
- let: (k, d, r) as edvpq := redivp p q in
- if lead_coef q \in GRing.unit then
- (0%N, (lead_coef q)^-k *: d, (lead_coef q)^-k *: r)
- else edvpq.
-Fact edivp_key : unit.
-Definition edivp := locked_with edivp_key edivp_expanded_def.
-Canonical edivp_unlockable := [unlockable fun edivp].
- -
-Definition divp p q := ((edivp p q).1).2.
-Definition modp p q := (edivp p q).2.
-Definition scalp p q := ((edivp p q).1).1.
-Definition dvdp p q := modp q p == 0.
-Definition eqp p q := (dvdp p q) && (dvdp q p).
- -
-End IDomainPseudoDivisionDefs.
- -
-Notation "m %/ d" := (divp m d) : ring_scope.
-Notation "m %% d" := (modp m d) : ring_scope.
-Notation "p %| q" := (dvdp p q) : ring_scope.
-Notation "p %= q" := (eqp p q) : ring_scope.
-End IdomainDefs.
- -
-Module WeakIdomain.
- -
-Import Ring ComRing UnitRing IdomainDefs.
- -
-Section WeakTheoryForIDomainPseudoDivision.
- -
-Variable R : idomainType.
-Implicit Type p q r d : {poly R}.
- -
-Lemma edivp_def p q : edivp p q = (scalp p q, divp p q, modp p q).
- -
-Lemma edivp_redivp p q : (lead_coef q \in GRing.unit) = false →
- edivp p q = redivp p q.
- -
-Lemma divpE p q :
- p %/ q = if lead_coef q \in GRing.unit
- then (lead_coef q)^-(rscalp p q) *: (rdivp p q)
- else rdivp p q.
- -
-Lemma modpE p q :
- p %% q = if lead_coef q \in GRing.unit
- then (lead_coef q)^-(rscalp p q) *: (rmodp p q)
- else rmodp p q.
- -
-Lemma scalpE p q :
- scalp p q = if lead_coef q \in GRing.unit then 0%N else rscalp p q.
- -
-Lemma dvdpE p q : p %| q = rdvdp p q.
- -
-Lemma lc_expn_scalp_neq0 p q : lead_coef q ^+ scalp p q != 0.
- -
-Hint Resolve lc_expn_scalp_neq0 : core.
- -
-Variant edivp_spec (m d : {poly R}) :
- nat × {poly R} × {poly R} → bool → Type :=
-|Redivp_spec k (q r: {poly R}) of
- (lead_coef d ^+ k) *: m = q × d + r & lead_coef d \notin GRing.unit &
- (d != 0 → size r < size d) : edivp_spec m d (k, q, r) false
-|Fedivp_spec (q r: {poly R}) of m = q × d + r & (lead_coef d \in GRing.unit) &
- (d != 0 → size r < size d) : edivp_spec m d (0%N, q, r) true.
- -
-
- There are several ways to state this fact. The most appropriate statement
- might be polished in light of usage.
-
-
-Lemma edivpP m d : edivp_spec m d (edivp m d) (lead_coef d \in GRing.unit).
- -
-Lemma edivp_eq d q r : size r < size d → lead_coef d \in GRing.unit →
- edivp (q × d + r) d = (0%N, q, r).
- -
-Lemma divp_eq p q :
- (lead_coef q ^+ (scalp p q)) *: p = (p %/ q) × q + (p %% q).
- -
-Lemma dvdp_eq q p :
- (q %| p) = ((lead_coef q) ^+ (scalp p q) *: p == (p %/ q) × q).
- -
-Lemma divpK d p : d %| p → p %/ d × d = ((lead_coef d) ^+ (scalp p d)) *: p.
- -
-Lemma divpKC d p : d %| p → d × (p %/ d) = ((lead_coef d) ^+ (scalp p d)) *: p.
- -
-Lemma dvdpP q p :
- reflect (exists2 cqq, cqq.1 != 0 & cqq.1 *: p = cqq.2 × q) (q %| p).
- -
-Lemma mulpK p q : q != 0 →
- p × q %/ q = lead_coef q ^+ scalp (p × q) q *: p.
- -
-Lemma mulKp p q : q != 0 →
- q × p %/ q = lead_coef q ^+ scalp (p × q) q *: p.
- -
-Lemma divpp p : p != 0 → p %/ p = (lead_coef p ^+ scalp p p)%:P.
- -
-End WeakTheoryForIDomainPseudoDivision.
- -
-Hint Resolve lc_expn_scalp_neq0 : core.
- -
-End WeakIdomain.
- -
-Module CommonIdomain.
- -
-Import Ring ComRing UnitRing IdomainDefs WeakIdomain.
- -
-Section IDomainPseudoDivision.
- -
-Variable R : idomainType.
-Implicit Type p q r d m n : {poly R}.
- -
-Lemma scalp0 p : scalp p 0 = 0%N.
- -
-Lemma divp_small p q : size p < size q → p %/ q = 0.
- -
-Lemma leq_divp p q : (size (p %/ q) ≤ size p).
- -
-Lemma div0p p : 0 %/ p = 0.
- -
-Lemma divp0 p : p %/ 0 = 0.
- -
-Lemma divp1 m : m %/ 1 = m.
- -
-Lemma modp0 p : p %% 0 = p.
- -
-Lemma mod0p p : 0 %% p = 0.
- -
-Lemma modp1 p : p %% 1 = 0.
- -
-Hint Resolve divp0 divp1 mod0p modp0 modp1 : core.
- -
-Lemma modp_small p q : size p < size q → p %% q = p.
- -
-Lemma modpC p c : c != 0 → p %% c%:P = 0.
- -
-Lemma modp_mull p q : (p × q) %% q = 0.
- -
-Lemma modp_mulr d p : (d × p) %% d = 0.
- -
-Lemma modpp d : d %% d = 0.
- -
-Lemma ltn_modp p q : (size (p %% q) < size q) = (q != 0).
- -
-Lemma ltn_divpl d q p : d != 0 →
- (size (q %/ d) < size p) = (size q < size (p × d)).
- -
-Lemma leq_divpr d p q : d != 0 →
- (size p ≤ size (q %/ d)) = (size (p × d) ≤ size q).
- -
-Lemma divpN0 d p : d != 0 → (p %/ d != 0) = (size d ≤ size p).
- -
-Lemma size_divp p q : q != 0 → size (p %/ q) = ((size p) - (size q).-1)%N.
- -
-Lemma ltn_modpN0 p q : q != 0 → size (p %% q) < size q.
- -
-Lemma modp_mod p q : (p %% q) %% q = p %% q.
- -
-Lemma leq_modp m d : size (m %% d) ≤ size m.
- -
-Lemma dvdp0 d : d %| 0.
- -
-Hint Resolve dvdp0 : core.
- -
-Lemma dvd0p p : (0 %| p) = (p == 0).
- -
-Lemma dvd0pP p : reflect (p = 0) (0 %| p).
- -
-Lemma dvdpN0 p q : p %| q → q != 0 → p != 0.
- -
-Lemma dvdp1 d : (d %| 1) = ((size d) == 1%N).
- -
-Lemma dvd1p m : 1 %| m.
- -
-Lemma gtNdvdp p q : p != 0 → size p < size q → (q %| p) = false.
- -
-Lemma modp_eq0P p q : reflect (p %% q = 0) (q %| p).
- -
-Lemma modp_eq0 p q : (q %| p) → p %% q = 0.
- -
-Lemma leq_divpl d p q :
- d %| p → (size (p %/ d) ≤ size q) = (size p ≤ size (q × d)).
- -
-Lemma dvdp_leq p q : q != 0 → p %| q → size p ≤ size q.
- -
-Lemma eq_dvdp c quo q p : c != 0 → c *: p = quo × q → q %| p.
- -
-Lemma dvdpp d : d %| d.
- -
-Hint Resolve dvdpp : core.
- -
-Lemma divp_dvd p q : (p %| q) → ((q %/ p) %| q).
- -
-Lemma dvdp_mull m d n : d %| n → d %| m × n.
- -
-Lemma dvdp_mulr n d m : d %| m → d %| m × n.
- -
-Hint Resolve dvdp_mull dvdp_mulr : core.
- -
-Lemma dvdp_mul d1 d2 m1 m2 : d1 %| m1 → d2 %| m2 → d1 × d2 %| m1 × m2.
- -
-Lemma dvdp_addr m d n : d %| m → (d %| m + n) = (d %| n).
- -
-Lemma dvdp_addl n d m : d %| n → (d %| m + n) = (d %| m).
- -
-Lemma dvdp_add d m n : d %| m → d %| n → d %| m + n.
- -
-Lemma dvdp_add_eq d m n : d %| m + n → (d %| m) = (d %| n).
- -
-Lemma dvdp_subr d m n : d %| m → (d %| m - n) = (d %| n).
- -
-Lemma dvdp_subl d m n : d %| n → (d %| m - n) = (d %| m).
- -
-Lemma dvdp_sub d m n : d %| m → d %| n → d %| m - n.
- -
-Lemma dvdp_mod d n m : d %| n → (d %| m) = (d %| m %% n).
- -
-Lemma dvdp_trans : transitive (@dvdp R).
- -
-Lemma dvdp_mulIl p q : p %| p × q.
- -
-Lemma dvdp_mulIr p q : q %| p × q.
- -
-Lemma dvdp_mul2r r p q : r != 0 → (p × r %| q × r) = (p %| q).
- -
-Lemma dvdp_mul2l r p q: r != 0 → (r × p %| r × q) = (p %| q).
- -
-Lemma ltn_divpr d p q :
- d %| q → (size p < size (q %/ d)) = (size (p × d) < size q).
- -
-Lemma dvdp_exp d k p : 0 < k → d %| p → d %| (p ^+ k).
- -
-Lemma dvdp_exp2l d k l : k ≤ l → d ^+ k %| d ^+ l.
- -
-Lemma dvdp_Pexp2l d k l : 1 < size d → (d ^+ k %| d ^+ l) = (k ≤ l).
- -
-Lemma dvdp_exp2r p q k : p %| q → p ^+ k %| q ^+ k.
- -
-Lemma dvdp_exp_sub p q k l: p != 0 →
- (p ^+ k %| q × p ^+ l) = (p ^+ (k - l) %| q).
- -
-Lemma dvdp_XsubCl p x : ('X - x%:P) %| p = root p x.
- -
-Lemma polyXsubCP p x : reflect (p.[x] = 0) (('X - x%:P) %| p).
- -
-Lemma eqp_div_XsubC p c :
- (p == (p %/ ('X - c%:P)) × ('X - c%:P)) = ('X - c%:P %| p).
- -
-Lemma root_factor_theorem p x : root p x = (('X - x%:P) %| p).
- -
-Lemma uniq_roots_dvdp p rs : all (root p) rs → uniq_roots rs →
- (\prod_(z <- rs) ('X - z%:P)) %| p.
- -
-Lemma root_bigmul : ∀ x (ps : seq {poly R}),
- ~~root (\big[*%R/1]_(p <- ps) p) x = all (fun p ⇒ ~~ root p x) ps.
- -
-Lemma eqpP m n :
- reflect (exists2 c12, (c12.1 != 0) && (c12.2 != 0) & c12.1 *: m = c12.2 *: n)
- (m %= n).
- -
-Lemma eqp_eq p q: p %= q → (lead_coef q) *: p = (lead_coef p) *: q.
- -
-Lemma eqpxx : reflexive (@eqp R).
- -
-Hint Resolve eqpxx : core.
- -
-Lemma eqp_sym : symmetric (@eqp R).
- -
-Lemma eqp_trans : transitive (@eqp R).
- -
-Lemma eqp_ltrans : left_transitive (@eqp R).
- -
-Lemma eqp_rtrans : right_transitive (@eqp R).
- -
-Lemma eqp0 : ∀ p, (p %= 0) = (p == 0).
- -
-Lemma eqp01 : 0 %= (1 : {poly R}) = false.
- -
-Lemma eqp_scale p c : c != 0 → c *: p %= p.
- -
-Lemma eqp_size p q : p %= q → size p = size q.
- -
-Lemma size_poly_eq1 p : (size p == 1%N) = (p %= 1).
- -
-Lemma polyXsubC_eqp1 (x : R) : ('X - x%:P %= 1) = false.
- -
-Lemma dvdp_eqp1 p q : p %| q → q %= 1 → p %= 1.
- -
-Lemma eqp_dvdr q p d: p %= q → d %| p = (d %| q).
- -
-Lemma eqp_dvdl d2 d1 p : d1 %= d2 → d1 %| p = (d2 %| p).
- -
-Lemma dvdp_scaler c m n : c != 0 → m %| c *: n = (m %| n).
- -
-Lemma dvdp_scalel c m n : c != 0 → (c *: m %| n) = (m %| n).
- -
-Lemma dvdp_opp d p : d %| (- p) = (d %| p).
- -
-Lemma eqp_mul2r r p q : r != 0 → (p × r %= q × r) = (p %= q).
- -
-Lemma eqp_mul2l r p q: r != 0 → (r × p %= r × q) = (p %= q).
- -
-Lemma eqp_mull r p q: (q %= r) → (p × q %= p × r).
- -
-Lemma eqp_mulr q p r : (p %= q) → (p × r %= q × r).
- -
-Lemma eqp_exp p q k : p %= q → p ^+ k %= q ^+ k.
- -
-Lemma polyC_eqp1 (c : R) : (c%:P %= 1) = (c != 0).
- -
-Lemma dvdUp d p: d %= 1 → d %| p.
- -
-Lemma dvdp_size_eqp p q : p %| q → size p == size q = (p %= q).
- -
-Lemma eqp_root p q : p %= q → root p =1 root q.
- -
-Lemma eqp_rmod_mod p q : rmodp p q %= modp p q.
- -
-Lemma eqp_rdiv_div p q : rdivp p q %= divp p q.
- -
-Lemma dvd_eqp_divl d p q (dvd_dp : d %| q) (eq_pq : p %= q) :
- p %/ d %= q %/ d.
- -
-Definition gcdp_rec p q :=
- let: (p1, q1) := if size p < size q then (q, p) else (p, q) in
- if p1 == 0 then q1 else
- let fix loop (n : nat) (pp qq : {poly R}) {struct n} :=
- let rr := modp pp qq in
- if rr == 0 then qq else
- if n is n1.+1 then loop n1 qq rr else rr in
- loop (size p1) p1 q1.
- -
-Definition gcdp := nosimpl gcdp_rec.
- -
-Lemma gcd0p : left_id 0 gcdp.
- -
-Lemma gcdp0 : right_id 0 gcdp.
- -
-Lemma gcdpE p q :
- gcdp p q = if size p < size q
- then gcdp (modp q p) p else gcdp (modp p q) q.
- -
-Lemma size_gcd1p p : size (gcdp 1 p) = 1%N.
- -
-Lemma size_gcdp1 p : size (gcdp p 1) = 1%N.
- -
-Lemma gcdpp : idempotent gcdp.
- -
-Lemma dvdp_gcdlr p q : (gcdp p q %| p) && (gcdp p q %| q).
- -
-Lemma dvdp_gcdl p q : gcdp p q %| p.
- -
-Lemma dvdp_gcdr p q :gcdp p q %| q.
- -
-Lemma leq_gcdpl p q : p != 0 → size (gcdp p q) ≤ size p.
- -
-Lemma leq_gcdpr p q : q != 0 → size (gcdp p q) ≤ size q.
- -
-Lemma dvdp_gcd p m n : p %| gcdp m n = (p %| m) && (p %| n).
- -
-Lemma gcdpC : ∀ p q, gcdp p q %= gcdp q p.
- -
-Lemma gcd1p p : gcdp 1 p %= 1.
- -
-Lemma gcdp1 p : gcdp p 1 %= 1.
- -
-Lemma gcdp_addl_mul p q r: gcdp r (p × r + q) %= gcdp r q.
- -
-Lemma gcdp_addl m n : gcdp m (m + n) %= gcdp m n.
- -
-Lemma gcdp_addr m n : gcdp m (n + m) %= gcdp m n.
- -
-Lemma gcdp_mull m n : gcdp n (m × n) %= n.
- -
-Lemma gcdp_mulr m n : gcdp n (n × m) %= n.
- -
-Lemma gcdp_scalel c m n : c != 0 → gcdp (c *: m) n %= gcdp m n.
- -
-Lemma gcdp_scaler c m n : c != 0 → gcdp m (c *: n) %= gcdp m n.
- -
-Lemma dvdp_gcd_idl m n : m %| n → gcdp m n %= m.
- -
-Lemma dvdp_gcd_idr m n : n %| m → gcdp m n %= n.
- -
-Lemma gcdp_exp p k l : gcdp (p ^+ k) (p ^+ l) %= p ^+ minn k l.
- -
-Lemma gcdp_eq0 p q : gcdp p q == 0 = (p == 0) && (q == 0).
- -
-Lemma eqp_gcdr p q r : q %= r → gcdp p q %= gcdp p r.
- -
-Lemma eqp_gcdl r p q : p %= q → gcdp p r %= gcdp q r.
- -
-Lemma eqp_gcd p1 p2 q1 q2 : p1 %= p2 → q1 %= q2 → gcdp p1 q1 %= gcdp p2 q2.
- -
-Lemma eqp_rgcd_gcd p q : rgcdp p q %= gcdp p q.
- -
-Lemma gcdp_modr m n : gcdp m (n %% m) %= gcdp m n.
- -
-Lemma gcdp_modl m n : gcdp (m %% n) n %= gcdp m n.
- -
-Lemma gcdp_def d m n :
- d %| m → d %| n → (∀ d', d' %| m → d' %| n → d' %| d) →
- gcdp m n %= d.
- -
-Definition coprimep p q := size (gcdp p q) == 1%N.
- -
-Lemma coprimep_size_gcd p q : coprimep p q → size (gcdp p q) = 1%N.
- -
-Lemma coprimep_def p q : (coprimep p q) = (size (gcdp p q) == 1%N).
- -
-Lemma coprimep_scalel c m n :
- c != 0 → coprimep (c *: m) n = coprimep m n.
- -
-Lemma coprimep_scaler c m n:
- c != 0 → coprimep m (c *: n) = coprimep m n.
- -
-Lemma coprimepp p : coprimep p p = (size p == 1%N).
- -
-Lemma gcdp_eqp1 p q : gcdp p q %= 1 = (coprimep p q).
- -
-Lemma coprimep_sym p q : coprimep p q = coprimep q p.
- -
-Lemma coprime1p p : coprimep 1 p.
- -
-Lemma coprimep1 p : coprimep p 1.
- -
-Lemma coprimep0 p : coprimep p 0 = (p %= 1).
- -
-Lemma coprime0p p : coprimep 0 p = (p %= 1).
- -
-
-
-- -
-Lemma edivp_eq d q r : size r < size d → lead_coef d \in GRing.unit →
- edivp (q × d + r) d = (0%N, q, r).
- -
-Lemma divp_eq p q :
- (lead_coef q ^+ (scalp p q)) *: p = (p %/ q) × q + (p %% q).
- -
-Lemma dvdp_eq q p :
- (q %| p) = ((lead_coef q) ^+ (scalp p q) *: p == (p %/ q) × q).
- -
-Lemma divpK d p : d %| p → p %/ d × d = ((lead_coef d) ^+ (scalp p d)) *: p.
- -
-Lemma divpKC d p : d %| p → d × (p %/ d) = ((lead_coef d) ^+ (scalp p d)) *: p.
- -
-Lemma dvdpP q p :
- reflect (exists2 cqq, cqq.1 != 0 & cqq.1 *: p = cqq.2 × q) (q %| p).
- -
-Lemma mulpK p q : q != 0 →
- p × q %/ q = lead_coef q ^+ scalp (p × q) q *: p.
- -
-Lemma mulKp p q : q != 0 →
- q × p %/ q = lead_coef q ^+ scalp (p × q) q *: p.
- -
-Lemma divpp p : p != 0 → p %/ p = (lead_coef p ^+ scalp p p)%:P.
- -
-End WeakTheoryForIDomainPseudoDivision.
- -
-Hint Resolve lc_expn_scalp_neq0 : core.
- -
-End WeakIdomain.
- -
-Module CommonIdomain.
- -
-Import Ring ComRing UnitRing IdomainDefs WeakIdomain.
- -
-Section IDomainPseudoDivision.
- -
-Variable R : idomainType.
-Implicit Type p q r d m n : {poly R}.
- -
-Lemma scalp0 p : scalp p 0 = 0%N.
- -
-Lemma divp_small p q : size p < size q → p %/ q = 0.
- -
-Lemma leq_divp p q : (size (p %/ q) ≤ size p).
- -
-Lemma div0p p : 0 %/ p = 0.
- -
-Lemma divp0 p : p %/ 0 = 0.
- -
-Lemma divp1 m : m %/ 1 = m.
- -
-Lemma modp0 p : p %% 0 = p.
- -
-Lemma mod0p p : 0 %% p = 0.
- -
-Lemma modp1 p : p %% 1 = 0.
- -
-Hint Resolve divp0 divp1 mod0p modp0 modp1 : core.
- -
-Lemma modp_small p q : size p < size q → p %% q = p.
- -
-Lemma modpC p c : c != 0 → p %% c%:P = 0.
- -
-Lemma modp_mull p q : (p × q) %% q = 0.
- -
-Lemma modp_mulr d p : (d × p) %% d = 0.
- -
-Lemma modpp d : d %% d = 0.
- -
-Lemma ltn_modp p q : (size (p %% q) < size q) = (q != 0).
- -
-Lemma ltn_divpl d q p : d != 0 →
- (size (q %/ d) < size p) = (size q < size (p × d)).
- -
-Lemma leq_divpr d p q : d != 0 →
- (size p ≤ size (q %/ d)) = (size (p × d) ≤ size q).
- -
-Lemma divpN0 d p : d != 0 → (p %/ d != 0) = (size d ≤ size p).
- -
-Lemma size_divp p q : q != 0 → size (p %/ q) = ((size p) - (size q).-1)%N.
- -
-Lemma ltn_modpN0 p q : q != 0 → size (p %% q) < size q.
- -
-Lemma modp_mod p q : (p %% q) %% q = p %% q.
- -
-Lemma leq_modp m d : size (m %% d) ≤ size m.
- -
-Lemma dvdp0 d : d %| 0.
- -
-Hint Resolve dvdp0 : core.
- -
-Lemma dvd0p p : (0 %| p) = (p == 0).
- -
-Lemma dvd0pP p : reflect (p = 0) (0 %| p).
- -
-Lemma dvdpN0 p q : p %| q → q != 0 → p != 0.
- -
-Lemma dvdp1 d : (d %| 1) = ((size d) == 1%N).
- -
-Lemma dvd1p m : 1 %| m.
- -
-Lemma gtNdvdp p q : p != 0 → size p < size q → (q %| p) = false.
- -
-Lemma modp_eq0P p q : reflect (p %% q = 0) (q %| p).
- -
-Lemma modp_eq0 p q : (q %| p) → p %% q = 0.
- -
-Lemma leq_divpl d p q :
- d %| p → (size (p %/ d) ≤ size q) = (size p ≤ size (q × d)).
- -
-Lemma dvdp_leq p q : q != 0 → p %| q → size p ≤ size q.
- -
-Lemma eq_dvdp c quo q p : c != 0 → c *: p = quo × q → q %| p.
- -
-Lemma dvdpp d : d %| d.
- -
-Hint Resolve dvdpp : core.
- -
-Lemma divp_dvd p q : (p %| q) → ((q %/ p) %| q).
- -
-Lemma dvdp_mull m d n : d %| n → d %| m × n.
- -
-Lemma dvdp_mulr n d m : d %| m → d %| m × n.
- -
-Hint Resolve dvdp_mull dvdp_mulr : core.
- -
-Lemma dvdp_mul d1 d2 m1 m2 : d1 %| m1 → d2 %| m2 → d1 × d2 %| m1 × m2.
- -
-Lemma dvdp_addr m d n : d %| m → (d %| m + n) = (d %| n).
- -
-Lemma dvdp_addl n d m : d %| n → (d %| m + n) = (d %| m).
- -
-Lemma dvdp_add d m n : d %| m → d %| n → d %| m + n.
- -
-Lemma dvdp_add_eq d m n : d %| m + n → (d %| m) = (d %| n).
- -
-Lemma dvdp_subr d m n : d %| m → (d %| m - n) = (d %| n).
- -
-Lemma dvdp_subl d m n : d %| n → (d %| m - n) = (d %| m).
- -
-Lemma dvdp_sub d m n : d %| m → d %| n → d %| m - n.
- -
-Lemma dvdp_mod d n m : d %| n → (d %| m) = (d %| m %% n).
- -
-Lemma dvdp_trans : transitive (@dvdp R).
- -
-Lemma dvdp_mulIl p q : p %| p × q.
- -
-Lemma dvdp_mulIr p q : q %| p × q.
- -
-Lemma dvdp_mul2r r p q : r != 0 → (p × r %| q × r) = (p %| q).
- -
-Lemma dvdp_mul2l r p q: r != 0 → (r × p %| r × q) = (p %| q).
- -
-Lemma ltn_divpr d p q :
- d %| q → (size p < size (q %/ d)) = (size (p × d) < size q).
- -
-Lemma dvdp_exp d k p : 0 < k → d %| p → d %| (p ^+ k).
- -
-Lemma dvdp_exp2l d k l : k ≤ l → d ^+ k %| d ^+ l.
- -
-Lemma dvdp_Pexp2l d k l : 1 < size d → (d ^+ k %| d ^+ l) = (k ≤ l).
- -
-Lemma dvdp_exp2r p q k : p %| q → p ^+ k %| q ^+ k.
- -
-Lemma dvdp_exp_sub p q k l: p != 0 →
- (p ^+ k %| q × p ^+ l) = (p ^+ (k - l) %| q).
- -
-Lemma dvdp_XsubCl p x : ('X - x%:P) %| p = root p x.
- -
-Lemma polyXsubCP p x : reflect (p.[x] = 0) (('X - x%:P) %| p).
- -
-Lemma eqp_div_XsubC p c :
- (p == (p %/ ('X - c%:P)) × ('X - c%:P)) = ('X - c%:P %| p).
- -
-Lemma root_factor_theorem p x : root p x = (('X - x%:P) %| p).
- -
-Lemma uniq_roots_dvdp p rs : all (root p) rs → uniq_roots rs →
- (\prod_(z <- rs) ('X - z%:P)) %| p.
- -
-Lemma root_bigmul : ∀ x (ps : seq {poly R}),
- ~~root (\big[*%R/1]_(p <- ps) p) x = all (fun p ⇒ ~~ root p x) ps.
- -
-Lemma eqpP m n :
- reflect (exists2 c12, (c12.1 != 0) && (c12.2 != 0) & c12.1 *: m = c12.2 *: n)
- (m %= n).
- -
-Lemma eqp_eq p q: p %= q → (lead_coef q) *: p = (lead_coef p) *: q.
- -
-Lemma eqpxx : reflexive (@eqp R).
- -
-Hint Resolve eqpxx : core.
- -
-Lemma eqp_sym : symmetric (@eqp R).
- -
-Lemma eqp_trans : transitive (@eqp R).
- -
-Lemma eqp_ltrans : left_transitive (@eqp R).
- -
-Lemma eqp_rtrans : right_transitive (@eqp R).
- -
-Lemma eqp0 : ∀ p, (p %= 0) = (p == 0).
- -
-Lemma eqp01 : 0 %= (1 : {poly R}) = false.
- -
-Lemma eqp_scale p c : c != 0 → c *: p %= p.
- -
-Lemma eqp_size p q : p %= q → size p = size q.
- -
-Lemma size_poly_eq1 p : (size p == 1%N) = (p %= 1).
- -
-Lemma polyXsubC_eqp1 (x : R) : ('X - x%:P %= 1) = false.
- -
-Lemma dvdp_eqp1 p q : p %| q → q %= 1 → p %= 1.
- -
-Lemma eqp_dvdr q p d: p %= q → d %| p = (d %| q).
- -
-Lemma eqp_dvdl d2 d1 p : d1 %= d2 → d1 %| p = (d2 %| p).
- -
-Lemma dvdp_scaler c m n : c != 0 → m %| c *: n = (m %| n).
- -
-Lemma dvdp_scalel c m n : c != 0 → (c *: m %| n) = (m %| n).
- -
-Lemma dvdp_opp d p : d %| (- p) = (d %| p).
- -
-Lemma eqp_mul2r r p q : r != 0 → (p × r %= q × r) = (p %= q).
- -
-Lemma eqp_mul2l r p q: r != 0 → (r × p %= r × q) = (p %= q).
- -
-Lemma eqp_mull r p q: (q %= r) → (p × q %= p × r).
- -
-Lemma eqp_mulr q p r : (p %= q) → (p × r %= q × r).
- -
-Lemma eqp_exp p q k : p %= q → p ^+ k %= q ^+ k.
- -
-Lemma polyC_eqp1 (c : R) : (c%:P %= 1) = (c != 0).
- -
-Lemma dvdUp d p: d %= 1 → d %| p.
- -
-Lemma dvdp_size_eqp p q : p %| q → size p == size q = (p %= q).
- -
-Lemma eqp_root p q : p %= q → root p =1 root q.
- -
-Lemma eqp_rmod_mod p q : rmodp p q %= modp p q.
- -
-Lemma eqp_rdiv_div p q : rdivp p q %= divp p q.
- -
-Lemma dvd_eqp_divl d p q (dvd_dp : d %| q) (eq_pq : p %= q) :
- p %/ d %= q %/ d.
- -
-Definition gcdp_rec p q :=
- let: (p1, q1) := if size p < size q then (q, p) else (p, q) in
- if p1 == 0 then q1 else
- let fix loop (n : nat) (pp qq : {poly R}) {struct n} :=
- let rr := modp pp qq in
- if rr == 0 then qq else
- if n is n1.+1 then loop n1 qq rr else rr in
- loop (size p1) p1 q1.
- -
-Definition gcdp := nosimpl gcdp_rec.
- -
-Lemma gcd0p : left_id 0 gcdp.
- -
-Lemma gcdp0 : right_id 0 gcdp.
- -
-Lemma gcdpE p q :
- gcdp p q = if size p < size q
- then gcdp (modp q p) p else gcdp (modp p q) q.
- -
-Lemma size_gcd1p p : size (gcdp 1 p) = 1%N.
- -
-Lemma size_gcdp1 p : size (gcdp p 1) = 1%N.
- -
-Lemma gcdpp : idempotent gcdp.
- -
-Lemma dvdp_gcdlr p q : (gcdp p q %| p) && (gcdp p q %| q).
- -
-Lemma dvdp_gcdl p q : gcdp p q %| p.
- -
-Lemma dvdp_gcdr p q :gcdp p q %| q.
- -
-Lemma leq_gcdpl p q : p != 0 → size (gcdp p q) ≤ size p.
- -
-Lemma leq_gcdpr p q : q != 0 → size (gcdp p q) ≤ size q.
- -
-Lemma dvdp_gcd p m n : p %| gcdp m n = (p %| m) && (p %| n).
- -
-Lemma gcdpC : ∀ p q, gcdp p q %= gcdp q p.
- -
-Lemma gcd1p p : gcdp 1 p %= 1.
- -
-Lemma gcdp1 p : gcdp p 1 %= 1.
- -
-Lemma gcdp_addl_mul p q r: gcdp r (p × r + q) %= gcdp r q.
- -
-Lemma gcdp_addl m n : gcdp m (m + n) %= gcdp m n.
- -
-Lemma gcdp_addr m n : gcdp m (n + m) %= gcdp m n.
- -
-Lemma gcdp_mull m n : gcdp n (m × n) %= n.
- -
-Lemma gcdp_mulr m n : gcdp n (n × m) %= n.
- -
-Lemma gcdp_scalel c m n : c != 0 → gcdp (c *: m) n %= gcdp m n.
- -
-Lemma gcdp_scaler c m n : c != 0 → gcdp m (c *: n) %= gcdp m n.
- -
-Lemma dvdp_gcd_idl m n : m %| n → gcdp m n %= m.
- -
-Lemma dvdp_gcd_idr m n : n %| m → gcdp m n %= n.
- -
-Lemma gcdp_exp p k l : gcdp (p ^+ k) (p ^+ l) %= p ^+ minn k l.
- -
-Lemma gcdp_eq0 p q : gcdp p q == 0 = (p == 0) && (q == 0).
- -
-Lemma eqp_gcdr p q r : q %= r → gcdp p q %= gcdp p r.
- -
-Lemma eqp_gcdl r p q : p %= q → gcdp p r %= gcdp q r.
- -
-Lemma eqp_gcd p1 p2 q1 q2 : p1 %= p2 → q1 %= q2 → gcdp p1 q1 %= gcdp p2 q2.
- -
-Lemma eqp_rgcd_gcd p q : rgcdp p q %= gcdp p q.
- -
-Lemma gcdp_modr m n : gcdp m (n %% m) %= gcdp m n.
- -
-Lemma gcdp_modl m n : gcdp (m %% n) n %= gcdp m n.
- -
-Lemma gcdp_def d m n :
- d %| m → d %| n → (∀ d', d' %| m → d' %| n → d' %| d) →
- gcdp m n %= d.
- -
-Definition coprimep p q := size (gcdp p q) == 1%N.
- -
-Lemma coprimep_size_gcd p q : coprimep p q → size (gcdp p q) = 1%N.
- -
-Lemma coprimep_def p q : (coprimep p q) = (size (gcdp p q) == 1%N).
- -
-Lemma coprimep_scalel c m n :
- c != 0 → coprimep (c *: m) n = coprimep m n.
- -
-Lemma coprimep_scaler c m n:
- c != 0 → coprimep m (c *: n) = coprimep m n.
- -
-Lemma coprimepp p : coprimep p p = (size p == 1%N).
- -
-Lemma gcdp_eqp1 p q : gcdp p q %= 1 = (coprimep p q).
- -
-Lemma coprimep_sym p q : coprimep p q = coprimep q p.
- -
-Lemma coprime1p p : coprimep 1 p.
- -
-Lemma coprimep1 p : coprimep p 1.
- -
-Lemma coprimep0 p : coprimep p 0 = (p %= 1).
- -
-Lemma coprime0p p : coprimep 0 p = (p %= 1).
- -
-
- This is different from coprimeP in div. shall we keep this?
-
-
-Lemma coprimepP p q :
- reflect (∀ d, d %| p → d %| q → d %= 1) (coprimep p q).
- -
-Lemma coprimepPn p q : p != 0 →
- reflect (∃ d, (d %| gcdp p q) && ~~ (d %= 1)) (~~ coprimep p q).
- -
-Lemma coprimep_dvdl q p r : r %| q → coprimep p q → coprimep p r.
- -
-Lemma coprimep_dvdr p q r :
- r %| p → coprimep p q → coprimep r q.
- -
-Lemma coprimep_modl p q : coprimep (p %% q) q = coprimep p q.
- -
-Lemma coprimep_modr q p : coprimep q (p %% q) = coprimep q p.
- -
-Lemma rcoprimep_coprimep q p : rcoprimep q p = coprimep q p.
- -
-Lemma eqp_coprimepr p q r : q %= r → coprimep p q = coprimep p r.
- -
-Lemma eqp_coprimepl p q r : q %= r → coprimep q p = coprimep r p.
- -
-
-
-- reflect (∀ d, d %| p → d %| q → d %= 1) (coprimep p q).
- -
-Lemma coprimepPn p q : p != 0 →
- reflect (∃ d, (d %| gcdp p q) && ~~ (d %= 1)) (~~ coprimep p q).
- -
-Lemma coprimep_dvdl q p r : r %| q → coprimep p q → coprimep p r.
- -
-Lemma coprimep_dvdr p q r :
- r %| p → coprimep p q → coprimep r q.
- -
-Lemma coprimep_modl p q : coprimep (p %% q) q = coprimep p q.
- -
-Lemma coprimep_modr q p : coprimep q (p %% q) = coprimep q p.
- -
-Lemma rcoprimep_coprimep q p : rcoprimep q p = coprimep q p.
- -
-Lemma eqp_coprimepr p q r : q %= r → coprimep p q = coprimep p r.
- -
-Lemma eqp_coprimepl p q r : q %= r → coprimep q p = coprimep r p.
- -
-
- This should be implemented with an extended remainder sequence
-
-
-Fixpoint egcdp_rec p q k {struct k} : {poly R} × {poly R} :=
- if k is k'.+1 then
- if q == 0 then (1, 0) else
- let: (u, v) := egcdp_rec q (p %% q) k' in
- (lead_coef q ^+ scalp p q *: v, (u - v × (p %/ q)))
- else (1, 0).
- -
-Definition egcdp p q :=
- if size q ≤ size p then egcdp_rec p q (size q)
- else let e := egcdp_rec q p (size p) in (e.2, e.1).
- -
-
-
-- if k is k'.+1 then
- if q == 0 then (1, 0) else
- let: (u, v) := egcdp_rec q (p %% q) k' in
- (lead_coef q ^+ scalp p q *: v, (u - v × (p %/ q)))
- else (1, 0).
- -
-Definition egcdp p q :=
- if size q ≤ size p then egcdp_rec p q (size q)
- else let e := egcdp_rec q p (size p) in (e.2, e.1).
- -
-
- No provable egcd0p
-
-
-Lemma egcdp0 p : egcdp p 0 = (1, 0).
- -
-Lemma egcdp_recP : ∀ k p q, q != 0 → size q ≤ k → size q ≤ size p →
- let e := (egcdp_rec p q k) in
- [/\ size e.1 ≤ size q, size e.2 ≤ size p & gcdp p q %= e.1 × p + e.2 × q].
- -
-Lemma egcdpP p q : p != 0 → q != 0 → ∀ (e := egcdp p q),
- [/\ size e.1 ≤ size q, size e.2 ≤ size p & gcdp p q %= e.1 × p + e.2 × q].
- -
-Lemma egcdpE p q (e := egcdp p q) : gcdp p q %= e.1 × p + e.2 × q.
- -
-Lemma Bezoutp p q : ∃ u, u.1 × p + u.2 × q %= (gcdp p q).
- -
-Lemma Bezout_coprimepP : ∀ p q,
- reflect (∃ u, u.1 × p + u.2 × q %= 1) (coprimep p q).
- -
-Lemma coprimep_root p q x : coprimep p q → root p x → q.[x] != 0.
- -
-Lemma Gauss_dvdpl p q d: coprimep d q → (d %| p × q) = (d %| p).
- -
-Lemma Gauss_dvdpr p q d: coprimep d q → (d %| q × p) = (d %| p).
- -
-
-
-- -
-Lemma egcdp_recP : ∀ k p q, q != 0 → size q ≤ k → size q ≤ size p →
- let e := (egcdp_rec p q k) in
- [/\ size e.1 ≤ size q, size e.2 ≤ size p & gcdp p q %= e.1 × p + e.2 × q].
- -
-Lemma egcdpP p q : p != 0 → q != 0 → ∀ (e := egcdp p q),
- [/\ size e.1 ≤ size q, size e.2 ≤ size p & gcdp p q %= e.1 × p + e.2 × q].
- -
-Lemma egcdpE p q (e := egcdp p q) : gcdp p q %= e.1 × p + e.2 × q.
- -
-Lemma Bezoutp p q : ∃ u, u.1 × p + u.2 × q %= (gcdp p q).
- -
-Lemma Bezout_coprimepP : ∀ p q,
- reflect (∃ u, u.1 × p + u.2 × q %= 1) (coprimep p q).
- -
-Lemma coprimep_root p q x : coprimep p q → root p x → q.[x] != 0.
- -
-Lemma Gauss_dvdpl p q d: coprimep d q → (d %| p × q) = (d %| p).
- -
-Lemma Gauss_dvdpr p q d: coprimep d q → (d %| q × p) = (d %| p).
- -
-
- This could be simplified with the introduction of lcmp
-
-
-Lemma Gauss_dvdp m n p : coprimep m n → (m × n %| p) = (m %| p) && (n %| p).
- -
-Lemma Gauss_gcdpr p m n : coprimep p m → gcdp p (m × n) %= gcdp p n.
- -
-Lemma Gauss_gcdpl p m n : coprimep p n → gcdp p (m × n) %= gcdp p m.
- -
-Lemma coprimep_mulr p q r : coprimep p (q × r) = (coprimep p q && coprimep p r).
- -
-Lemma coprimep_mull p q r: coprimep (q × r) p = (coprimep q p && coprimep r p).
- -
-Lemma modp_coprime k u n : k != 0 → (k × u) %% n %= 1 → coprimep k n.
- -
-Lemma coprimep_pexpl k m n : 0 < k → coprimep (m ^+ k) n = coprimep m n.
- -
-Lemma coprimep_pexpr k m n : 0 < k → coprimep m (n ^+ k) = coprimep m n.
- -
-Lemma coprimep_expl k m n : coprimep m n → coprimep (m ^+ k) n.
- -
-Lemma coprimep_expr k m n : coprimep m n → coprimep m (n ^+ k).
- -
-Lemma gcdp_mul2l p q r : gcdp (p × q) (p × r) %= (p × gcdp q r).
- -
-Lemma gcdp_mul2r q r p : gcdp (q × p) (r × p) %= (gcdp q r × p).
- -
-Lemma mulp_gcdr p q r : r × (gcdp p q) %= gcdp (r × p) (r × q).
- -
-Lemma mulp_gcdl p q r : (gcdp p q) × r %= gcdp (p × r) (q × r).
- -
-Lemma coprimep_div_gcd p q : (p != 0) || (q != 0) →
- coprimep (p %/ (gcdp p q)) (q %/ gcdp p q).
- -
-Lemma divp_eq0 p q : (p %/ q == 0) = [|| p == 0, q ==0 | size p < size q].
- -
-Lemma dvdp_div_eq0 p q : q %| p → (p %/ q == 0) = (p == 0).
- -
-Lemma Bezout_coprimepPn p q : p != 0 → q != 0 →
- reflect (exists2 uv : {poly R} × {poly R},
- (0 < size uv.1 < size q) && (0 < size uv.2 < size p) &
- uv.1 × p = uv.2 × q)
- (~~ (coprimep p q)).
- -
-Lemma dvdp_pexp2r m n k : k > 0 → (m ^+ k %| n ^+ k) = (m %| n).
- -
-Lemma root_gcd p q x : root (gcdp p q) x = root p x && root q x.
- -
-Lemma root_biggcd : ∀ x (ps : seq {poly R}),
- root (\big[gcdp/0]_(p <- ps) p) x = all (fun p ⇒ root p x) ps.
- -
-
-
-- -
-Lemma Gauss_gcdpr p m n : coprimep p m → gcdp p (m × n) %= gcdp p n.
- -
-Lemma Gauss_gcdpl p m n : coprimep p n → gcdp p (m × n) %= gcdp p m.
- -
-Lemma coprimep_mulr p q r : coprimep p (q × r) = (coprimep p q && coprimep p r).
- -
-Lemma coprimep_mull p q r: coprimep (q × r) p = (coprimep q p && coprimep r p).
- -
-Lemma modp_coprime k u n : k != 0 → (k × u) %% n %= 1 → coprimep k n.
- -
-Lemma coprimep_pexpl k m n : 0 < k → coprimep (m ^+ k) n = coprimep m n.
- -
-Lemma coprimep_pexpr k m n : 0 < k → coprimep m (n ^+ k) = coprimep m n.
- -
-Lemma coprimep_expl k m n : coprimep m n → coprimep (m ^+ k) n.
- -
-Lemma coprimep_expr k m n : coprimep m n → coprimep m (n ^+ k).
- -
-Lemma gcdp_mul2l p q r : gcdp (p × q) (p × r) %= (p × gcdp q r).
- -
-Lemma gcdp_mul2r q r p : gcdp (q × p) (r × p) %= (gcdp q r × p).
- -
-Lemma mulp_gcdr p q r : r × (gcdp p q) %= gcdp (r × p) (r × q).
- -
-Lemma mulp_gcdl p q r : (gcdp p q) × r %= gcdp (p × r) (q × r).
- -
-Lemma coprimep_div_gcd p q : (p != 0) || (q != 0) →
- coprimep (p %/ (gcdp p q)) (q %/ gcdp p q).
- -
-Lemma divp_eq0 p q : (p %/ q == 0) = [|| p == 0, q ==0 | size p < size q].
- -
-Lemma dvdp_div_eq0 p q : q %| p → (p %/ q == 0) = (p == 0).
- -
-Lemma Bezout_coprimepPn p q : p != 0 → q != 0 →
- reflect (exists2 uv : {poly R} × {poly R},
- (0 < size uv.1 < size q) && (0 < size uv.2 < size p) &
- uv.1 × p = uv.2 × q)
- (~~ (coprimep p q)).
- -
-Lemma dvdp_pexp2r m n k : k > 0 → (m ^+ k %| n ^+ k) = (m %| n).
- -
-Lemma root_gcd p q x : root (gcdp p q) x = root p x && root q x.
- -
-Lemma root_biggcd : ∀ x (ps : seq {poly R}),
- root (\big[gcdp/0]_(p <- ps) p) x = all (fun p ⇒ root p x) ps.
- -
-
- "gdcop Q P" is the Greatest Divisor of P which is coprime to Q
- if P null, we pose that gdcop returns 1 if Q null, 0 otherwise
-
-
-Fixpoint gdcop_rec q p k :=
- if k is m.+1 then
- if coprimep p q then p
- else gdcop_rec q (divp p (gcdp p q)) m
- else (q == 0)%:R.
- -
-Definition gdcop q p := gdcop_rec q p (size p).
- -
-Variant gdcop_spec q p : {poly R} → Type :=
- GdcopSpec r of (dvdp r p) & ((coprimep r q) || (p == 0))
- & (∀ d, dvdp d p → coprimep d q → dvdp d r)
- : gdcop_spec q p r.
- -
-Lemma gdcop0 q : gdcop q 0 = (q == 0)%:R.
- -
-Lemma gdcop_recP : ∀ q p k,
- size p ≤ k → gdcop_spec q p (gdcop_rec q p k).
- -
-Lemma gdcopP q p : gdcop_spec q p (gdcop q p).
- -
-Lemma coprimep_gdco p q : (q != 0)%B → coprimep (gdcop p q) p.
- -
-Lemma size2_dvdp_gdco p q d : p != 0 → size d = 2%N →
- (d %| (gdcop q p)) = (d %| p) && ~~(d %| q).
- -
-Lemma dvdp_gdco p q : (gdcop p q) %| q.
- -
-Lemma root_gdco p q x : p != 0 → root (gdcop q p) x = root p x && ~~(root q x).
- -
-Lemma dvdp_comp_poly r p q : (p %| q) → (p \Po r) %| (q \Po r).
- -
-Lemma gcdp_comp_poly r p q : gcdp p q \Po r %= gcdp (p \Po r) (q \Po r).
- -
-Lemma coprimep_comp_poly r p q : coprimep p q → coprimep (p \Po r) (q \Po r).
- -
-Lemma coprimep_addl_mul p q r : coprimep r (p × r + q) = coprimep r q.
- -
-Definition irreducible_poly p :=
- (size p > 1) × (∀ q, size q != 1%N → q %| p → q %= p) : Prop.
- -
-Lemma irredp_neq0 p : irreducible_poly p → p != 0.
- -
-Definition apply_irredp p (irr_p : irreducible_poly p) := irr_p.2.
-Coercion apply_irredp : irreducible_poly >-> Funclass.
- -
-Lemma modp_XsubC p c : p %% ('X - c%:P) = p.[c]%:P.
- -
-Lemma coprimep_XsubC p c : coprimep p ('X - c%:P) = ~~ root p c.
- -
-Lemma coprimepX p : coprimep p 'X = ~~ root p 0.
- -
-Lemma eqp_monic : {in monic &, ∀ p q, (p %= q) = (p == q)}.
- -
-Lemma dvdp_mul_XsubC p q c :
- (p %| ('X - c%:P) × q) = ((if root p c then p %/ ('X - c%:P) else p) %| q).
- -
-Lemma dvdp_prod_XsubC (I : Type) (r : seq I) (F : I → R) p :
- p %| \prod_(i <- r) ('X - (F i)%:P) →
- {m | p %= \prod_(i <- mask m r) ('X - (F i)%:P)}.
- -
-Lemma irredp_XsubC (x : R) : irreducible_poly ('X - x%:P).
- -
-Lemma irredp_XsubCP d p :
- irreducible_poly p → d %| p → {d %= 1} + {d %= p}.
- -
-End IDomainPseudoDivision.
- -
-Hint Resolve eqpxx divp0 divp1 mod0p modp0 modp1 dvdp_mull dvdp_mulr dvdpp : core.
-Hint Resolve dvdp0 : core.
- -
-End CommonIdomain.
- -
-Module Idomain.
- -
-Include IdomainDefs.
-Export IdomainDefs.
-Include WeakIdomain.
-Include CommonIdomain.
- -
-End Idomain.
- -
-Module IdomainMonic.
- -
-Import Ring ComRing UnitRing IdomainDefs Idomain.
- -
-Section MonicDivisor.
- -
-Variable R : idomainType.
-Variable q : {poly R}.
-Hypothesis monq : q \is monic.
- -
-Implicit Type p d r : {poly R}.
- -
-Lemma divpE p : p %/ q = rdivp p q.
- -
-Lemma modpE p : p %% q = rmodp p q.
- -
-Lemma scalpE p : scalp p q = 0%N.
- -
-Lemma divp_eq p : p = (p %/ q) × q + (p %% q).
- -
-Lemma divpp p : q %/ q = 1.
- -
-Lemma dvdp_eq p : (q %| p) = (p == (p %/ q) × q).
- -
-Lemma dvdpP p : reflect (∃ qq, p = qq × q) (q %| p).
- -
-Lemma mulpK p : p × q %/ q = p.
- -
-Lemma mulKp p : q × p %/ q = p.
- -
-End MonicDivisor.
- -
-End IdomainMonic.
- -
-Module IdomainUnit.
- -
-Import Ring ComRing UnitRing IdomainDefs Idomain.
- -
-Section UnitDivisor.
- -
-Variable R : idomainType.
-Variable d : {poly R}.
- -
-Hypothesis ulcd : lead_coef d \in GRing.unit.
- -
-Implicit Type p q r : {poly R}.
- -
-Lemma divp_eq p : p = (p %/ d) × d + (p %% d).
- -
-Lemma edivpP p q r : p = q × d + r → size r < size d →
- q = (p %/ d) ∧ r = p %% d.
- -
-Lemma divpP p q r : p = q × d + r → size r < size d →
- q = (p %/ d).
- -
-Lemma modpP p q r : p = q × d + r → size r < size d → r = (p %% d).
- -
-Lemma ulc_eqpP p q : lead_coef q \is a GRing.unit →
- reflect (exists2 c : R, c != 0 & p = c *: q) (p %= q).
- -
-Lemma dvdp_eq p : (d %| p) = (p == p %/ d × d).
- -
-Lemma ucl_eqp_eq p q : lead_coef q \is a GRing.unit →
- p %= q → p = (lead_coef p / lead_coef q) *: q.
- -
-Lemma modp_scalel c p : (c *: p) %% d = c *: (p %% d).
- -
-Lemma divp_scalel c p : (c *: p) %/ d = c *: (p %/ d).
- -
-Lemma eqp_modpl p q : p %= q → (p %% d) %= (q %% d).
- -
-Lemma eqp_divl p q : p %= q → (p %/ d) %= (q %/ d).
- -
-Lemma modp_opp p : (- p) %% d = - (p %% d).
- -
-Lemma divp_opp p : (- p) %/ d = - (p %/ d).
- -
-Lemma modp_add p q : (p + q) %% d = p %% d + q %% d.
- -
-Lemma divp_add p q : (p + q) %/ d = p %/ d + q %/ d.
- -
-Lemma mulpK q : (q × d) %/ d = q.
- -
-Lemma mulKp q : (d × q) %/ d = q.
- -
-Lemma divp_addl_mul_small q r :
- size r < size d → (q × d + r) %/ d = q.
- -
-Lemma modp_addl_mul_small q r :
- size r < size d → (q × d + r) %% d = r.
- -
-Lemma divp_addl_mul q r : (q × d + r) %/ d = q + r %/ d.
- -
-Lemma divpp : d %/ d = 1.
- -
-Lemma leq_trunc_divp m : size (m %/ d × d) ≤ size m.
- -
-Lemma dvdpP p : reflect (∃ q, p = q × d) (d %| p).
- -
-Lemma divpK p : d %| p → p %/ d × d = p.
- -
-Lemma divpKC p : d %| p → d × (p %/ d) = p.
- -
-Lemma dvdp_eq_div p q : d %| p → (q == p %/ d) = (q × d == p).
- -
-Lemma dvdp_eq_mul p q : d %| p → (p == q × d) = (p %/ d == q).
- -
-Lemma divp_mulA p q : d %| q → p × (q %/ d) = p × q %/ d.
- -
-Lemma divp_mulAC m n : d %| m → m %/ d × n = m × n %/ d.
- -
-Lemma divp_mulCA p q : d %| p → d %| q → p × (q %/ d) = q × (p %/ d).
- -
-Lemma modp_mul p q : (p × (q %% d)) %% d = (p × q) %% d.
- -
-End UnitDivisor.
- -
-Section MoreUnitDivisor.
- -
-Variable R : idomainType.
-Variable d : {poly R}.
-Hypothesis ulcd : lead_coef d \in GRing.unit.
- -
-Implicit Types p q : {poly R}.
- -
-Lemma expp_sub m n : n ≤ m → (d ^+ (m - n))%N = d ^+ m %/ d ^+ n.
- -
-Lemma divp_pmul2l p q : lead_coef q \in GRing.unit → d × p %/ (d × q) = p %/ q.
- -
-Lemma divp_pmul2r p q :
- lead_coef p \in GRing.unit → q × d %/ (p × d) = q %/ p.
- -
-Lemma divp_divl r p q :
- lead_coef r \in GRing.unit → lead_coef p \in GRing.unit →
- q %/ p %/ r = q %/ (p × r).
- -
-Lemma divpAC p q : lead_coef p \in GRing.unit → q %/ d %/ p = q %/ p %/ d.
- -
-Lemma modp_scaler c p : c \in GRing.unit → p %% (c *: d) = (p %% d).
- -
-Lemma divp_scaler c p : c \in GRing.unit → p %/ (c *: d) = c^-1 *: (p %/ d).
- -
-End MoreUnitDivisor.
- -
-End IdomainUnit.
- -
-Module Field.
- -
-Import Ring ComRing UnitRing.
-Include IdomainDefs.
-Export IdomainDefs.
-Include CommonIdomain.
- -
-Section FieldDivision.
- -
-Variable F : fieldType.
- -
-Implicit Type p q r d : {poly F}.
- -
-Lemma divp_eq p q : p = (p %/ q) × q + (p %% q).
- -
-Lemma divp_modpP p q d r : p = q × d + r → size r < size d →
- q = (p %/ d) ∧ r = p %% d.
- -
-Lemma divpP p q d r : p = q × d + r → size r < size d →
- q = (p %/ d).
- -
-Lemma modpP p q d r : p = q × d + r → size r < size d → r = (p %% d).
- -
-Lemma eqpfP p q : p %= q → p = (lead_coef p / lead_coef q) *: q.
- -
-Lemma dvdp_eq q p : (q %| p) = (p == p %/ q × q).
- -
-Lemma eqpf_eq p q : reflect (exists2 c, c != 0 & p = c *: q) (p %= q).
- -
-Lemma modp_scalel c p q : (c *: p) %% q = c *: (p %% q).
- -
-Lemma mulpK p q : q != 0 → p × q %/ q = p.
- -
-Lemma mulKp p q : q != 0 → q × p %/ q = p.
- -
-Lemma divp_scalel c p q : (c *: p) %/ q = c *: (p %/ q).
- -
-Lemma modp_scaler c p d : c != 0 → p %% (c *: d) = (p %% d).
- -
-Lemma divp_scaler c p d : c != 0 → p %/ (c *: d) = c^-1 *: (p %/ d).
- -
-Lemma eqp_modpl d p q : p %= q → (p %% d) %= (q %% d).
- -
-Lemma eqp_divl d p q : p %= q → (p %/ d) %= (q %/ d).
- -
-Lemma eqp_modpr d p q : p %= q → (d %% p) %= (d %% q).
- -
-Lemma eqp_mod p1 p2 q1 q2 : p1 %= p2 → q1 %= q2 → p1 %% q1 %= p2 %% q2.
- -
-Lemma eqp_divr (d m n : {poly F}) : m %= n → (d %/ m) %= (d %/ n).
- -
-Lemma eqp_div p1 p2 q1 q2 : p1 %= p2 → q1 %= q2 → p1 %/ q1 %= p2 %/ q2.
- -
-Lemma eqp_gdcor p q r : q %= r → gdcop p q %= gdcop p r.
- -
-Lemma eqp_gdcol p q r : q %= r → gdcop q p %= gdcop r p.
- -
-Lemma eqp_rgdco_gdco q p : rgdcop q p %= gdcop q p.
- -
-Lemma modp_opp p q : (- p) %% q = - (p %% q).
- -
-Lemma divp_opp p q : (- p) %/ q = - (p %/ q).
- -
-Lemma modp_add d p q : (p + q) %% d = p %% d + q %% d.
- -
-Lemma modNp p q : (- p) %% q = - (p %% q).
- -
-Lemma divp_add d p q : (p + q) %/ d = p %/ d + q %/ d.
- -
-Lemma divp_addl_mul_small d q r :
- size r < size d → (q × d + r) %/ d = q.
- -
-Lemma modp_addl_mul_small d q r :
- size r < size d → (q × d + r) %% d = r.
- -
-Lemma divp_addl_mul d q r : d != 0 → (q × d + r) %/ d = q + r %/ d.
- -
-Lemma divpp d : d != 0 → d %/ d = 1.
- -
-Lemma leq_trunc_divp d m : size (m %/ d × d) ≤ size m.
- -
-Lemma divpK d p : d %| p → p %/ d × d = p.
- -
-Lemma divpKC d p : d %| p → d × (p %/ d) = p.
- -
-Lemma dvdp_eq_div d p q : d != 0 → d %| p → (q == p %/ d) = (q × d == p).
- -
-Lemma dvdp_eq_mul d p q : d != 0 → d %| p → (p == q × d) = (p %/ d == q).
- -
-Lemma divp_mulA d p q : d %| q → p × (q %/ d) = p × q %/ d.
- -
-Lemma divp_mulAC d m n : d %| m → m %/ d × n = m × n %/ d.
- -
-Lemma divp_mulCA d p q : d %| p → d %| q → p × (q %/ d) = q × (p %/ d).
- -
-Lemma expp_sub d m n : d != 0 → m ≥ n → (d ^+ (m - n))%N = d ^+ m %/ d ^+ n.
- -
-Lemma divp_pmul2l d q p : d != 0 → q != 0 → d × p %/ (d × q) = p %/ q.
- -
-Lemma divp_pmul2r d p q : d != 0 → p != 0 → q × d %/ (p × d) = q %/ p.
- -
-Lemma divp_divl r p q : q %/ p %/ r = q %/ (p × r).
- -
-Lemma divpAC d p q : q %/ d %/ p = q %/ p %/ d.
- -
-Lemma edivp_def p q : edivp p q = (0%N, p %/ q, p %% q).
- -
-Lemma divpE p q : p %/ q = (lead_coef q)^-(rscalp p q) *: (rdivp p q).
- -
-Lemma modpE p q : p %% q = (lead_coef q)^-(rscalp p q) *: (rmodp p q).
- -
-Lemma scalpE p q : scalp p q = 0%N.
- -
-
-
-- if k is m.+1 then
- if coprimep p q then p
- else gdcop_rec q (divp p (gcdp p q)) m
- else (q == 0)%:R.
- -
-Definition gdcop q p := gdcop_rec q p (size p).
- -
-Variant gdcop_spec q p : {poly R} → Type :=
- GdcopSpec r of (dvdp r p) & ((coprimep r q) || (p == 0))
- & (∀ d, dvdp d p → coprimep d q → dvdp d r)
- : gdcop_spec q p r.
- -
-Lemma gdcop0 q : gdcop q 0 = (q == 0)%:R.
- -
-Lemma gdcop_recP : ∀ q p k,
- size p ≤ k → gdcop_spec q p (gdcop_rec q p k).
- -
-Lemma gdcopP q p : gdcop_spec q p (gdcop q p).
- -
-Lemma coprimep_gdco p q : (q != 0)%B → coprimep (gdcop p q) p.
- -
-Lemma size2_dvdp_gdco p q d : p != 0 → size d = 2%N →
- (d %| (gdcop q p)) = (d %| p) && ~~(d %| q).
- -
-Lemma dvdp_gdco p q : (gdcop p q) %| q.
- -
-Lemma root_gdco p q x : p != 0 → root (gdcop q p) x = root p x && ~~(root q x).
- -
-Lemma dvdp_comp_poly r p q : (p %| q) → (p \Po r) %| (q \Po r).
- -
-Lemma gcdp_comp_poly r p q : gcdp p q \Po r %= gcdp (p \Po r) (q \Po r).
- -
-Lemma coprimep_comp_poly r p q : coprimep p q → coprimep (p \Po r) (q \Po r).
- -
-Lemma coprimep_addl_mul p q r : coprimep r (p × r + q) = coprimep r q.
- -
-Definition irreducible_poly p :=
- (size p > 1) × (∀ q, size q != 1%N → q %| p → q %= p) : Prop.
- -
-Lemma irredp_neq0 p : irreducible_poly p → p != 0.
- -
-Definition apply_irredp p (irr_p : irreducible_poly p) := irr_p.2.
-Coercion apply_irredp : irreducible_poly >-> Funclass.
- -
-Lemma modp_XsubC p c : p %% ('X - c%:P) = p.[c]%:P.
- -
-Lemma coprimep_XsubC p c : coprimep p ('X - c%:P) = ~~ root p c.
- -
-Lemma coprimepX p : coprimep p 'X = ~~ root p 0.
- -
-Lemma eqp_monic : {in monic &, ∀ p q, (p %= q) = (p == q)}.
- -
-Lemma dvdp_mul_XsubC p q c :
- (p %| ('X - c%:P) × q) = ((if root p c then p %/ ('X - c%:P) else p) %| q).
- -
-Lemma dvdp_prod_XsubC (I : Type) (r : seq I) (F : I → R) p :
- p %| \prod_(i <- r) ('X - (F i)%:P) →
- {m | p %= \prod_(i <- mask m r) ('X - (F i)%:P)}.
- -
-Lemma irredp_XsubC (x : R) : irreducible_poly ('X - x%:P).
- -
-Lemma irredp_XsubCP d p :
- irreducible_poly p → d %| p → {d %= 1} + {d %= p}.
- -
-End IDomainPseudoDivision.
- -
-Hint Resolve eqpxx divp0 divp1 mod0p modp0 modp1 dvdp_mull dvdp_mulr dvdpp : core.
-Hint Resolve dvdp0 : core.
- -
-End CommonIdomain.
- -
-Module Idomain.
- -
-Include IdomainDefs.
-Export IdomainDefs.
-Include WeakIdomain.
-Include CommonIdomain.
- -
-End Idomain.
- -
-Module IdomainMonic.
- -
-Import Ring ComRing UnitRing IdomainDefs Idomain.
- -
-Section MonicDivisor.
- -
-Variable R : idomainType.
-Variable q : {poly R}.
-Hypothesis monq : q \is monic.
- -
-Implicit Type p d r : {poly R}.
- -
-Lemma divpE p : p %/ q = rdivp p q.
- -
-Lemma modpE p : p %% q = rmodp p q.
- -
-Lemma scalpE p : scalp p q = 0%N.
- -
-Lemma divp_eq p : p = (p %/ q) × q + (p %% q).
- -
-Lemma divpp p : q %/ q = 1.
- -
-Lemma dvdp_eq p : (q %| p) = (p == (p %/ q) × q).
- -
-Lemma dvdpP p : reflect (∃ qq, p = qq × q) (q %| p).
- -
-Lemma mulpK p : p × q %/ q = p.
- -
-Lemma mulKp p : q × p %/ q = p.
- -
-End MonicDivisor.
- -
-End IdomainMonic.
- -
-Module IdomainUnit.
- -
-Import Ring ComRing UnitRing IdomainDefs Idomain.
- -
-Section UnitDivisor.
- -
-Variable R : idomainType.
-Variable d : {poly R}.
- -
-Hypothesis ulcd : lead_coef d \in GRing.unit.
- -
-Implicit Type p q r : {poly R}.
- -
-Lemma divp_eq p : p = (p %/ d) × d + (p %% d).
- -
-Lemma edivpP p q r : p = q × d + r → size r < size d →
- q = (p %/ d) ∧ r = p %% d.
- -
-Lemma divpP p q r : p = q × d + r → size r < size d →
- q = (p %/ d).
- -
-Lemma modpP p q r : p = q × d + r → size r < size d → r = (p %% d).
- -
-Lemma ulc_eqpP p q : lead_coef q \is a GRing.unit →
- reflect (exists2 c : R, c != 0 & p = c *: q) (p %= q).
- -
-Lemma dvdp_eq p : (d %| p) = (p == p %/ d × d).
- -
-Lemma ucl_eqp_eq p q : lead_coef q \is a GRing.unit →
- p %= q → p = (lead_coef p / lead_coef q) *: q.
- -
-Lemma modp_scalel c p : (c *: p) %% d = c *: (p %% d).
- -
-Lemma divp_scalel c p : (c *: p) %/ d = c *: (p %/ d).
- -
-Lemma eqp_modpl p q : p %= q → (p %% d) %= (q %% d).
- -
-Lemma eqp_divl p q : p %= q → (p %/ d) %= (q %/ d).
- -
-Lemma modp_opp p : (- p) %% d = - (p %% d).
- -
-Lemma divp_opp p : (- p) %/ d = - (p %/ d).
- -
-Lemma modp_add p q : (p + q) %% d = p %% d + q %% d.
- -
-Lemma divp_add p q : (p + q) %/ d = p %/ d + q %/ d.
- -
-Lemma mulpK q : (q × d) %/ d = q.
- -
-Lemma mulKp q : (d × q) %/ d = q.
- -
-Lemma divp_addl_mul_small q r :
- size r < size d → (q × d + r) %/ d = q.
- -
-Lemma modp_addl_mul_small q r :
- size r < size d → (q × d + r) %% d = r.
- -
-Lemma divp_addl_mul q r : (q × d + r) %/ d = q + r %/ d.
- -
-Lemma divpp : d %/ d = 1.
- -
-Lemma leq_trunc_divp m : size (m %/ d × d) ≤ size m.
- -
-Lemma dvdpP p : reflect (∃ q, p = q × d) (d %| p).
- -
-Lemma divpK p : d %| p → p %/ d × d = p.
- -
-Lemma divpKC p : d %| p → d × (p %/ d) = p.
- -
-Lemma dvdp_eq_div p q : d %| p → (q == p %/ d) = (q × d == p).
- -
-Lemma dvdp_eq_mul p q : d %| p → (p == q × d) = (p %/ d == q).
- -
-Lemma divp_mulA p q : d %| q → p × (q %/ d) = p × q %/ d.
- -
-Lemma divp_mulAC m n : d %| m → m %/ d × n = m × n %/ d.
- -
-Lemma divp_mulCA p q : d %| p → d %| q → p × (q %/ d) = q × (p %/ d).
- -
-Lemma modp_mul p q : (p × (q %% d)) %% d = (p × q) %% d.
- -
-End UnitDivisor.
- -
-Section MoreUnitDivisor.
- -
-Variable R : idomainType.
-Variable d : {poly R}.
-Hypothesis ulcd : lead_coef d \in GRing.unit.
- -
-Implicit Types p q : {poly R}.
- -
-Lemma expp_sub m n : n ≤ m → (d ^+ (m - n))%N = d ^+ m %/ d ^+ n.
- -
-Lemma divp_pmul2l p q : lead_coef q \in GRing.unit → d × p %/ (d × q) = p %/ q.
- -
-Lemma divp_pmul2r p q :
- lead_coef p \in GRing.unit → q × d %/ (p × d) = q %/ p.
- -
-Lemma divp_divl r p q :
- lead_coef r \in GRing.unit → lead_coef p \in GRing.unit →
- q %/ p %/ r = q %/ (p × r).
- -
-Lemma divpAC p q : lead_coef p \in GRing.unit → q %/ d %/ p = q %/ p %/ d.
- -
-Lemma modp_scaler c p : c \in GRing.unit → p %% (c *: d) = (p %% d).
- -
-Lemma divp_scaler c p : c \in GRing.unit → p %/ (c *: d) = c^-1 *: (p %/ d).
- -
-End MoreUnitDivisor.
- -
-End IdomainUnit.
- -
-Module Field.
- -
-Import Ring ComRing UnitRing.
-Include IdomainDefs.
-Export IdomainDefs.
-Include CommonIdomain.
- -
-Section FieldDivision.
- -
-Variable F : fieldType.
- -
-Implicit Type p q r d : {poly F}.
- -
-Lemma divp_eq p q : p = (p %/ q) × q + (p %% q).
- -
-Lemma divp_modpP p q d r : p = q × d + r → size r < size d →
- q = (p %/ d) ∧ r = p %% d.
- -
-Lemma divpP p q d r : p = q × d + r → size r < size d →
- q = (p %/ d).
- -
-Lemma modpP p q d r : p = q × d + r → size r < size d → r = (p %% d).
- -
-Lemma eqpfP p q : p %= q → p = (lead_coef p / lead_coef q) *: q.
- -
-Lemma dvdp_eq q p : (q %| p) = (p == p %/ q × q).
- -
-Lemma eqpf_eq p q : reflect (exists2 c, c != 0 & p = c *: q) (p %= q).
- -
-Lemma modp_scalel c p q : (c *: p) %% q = c *: (p %% q).
- -
-Lemma mulpK p q : q != 0 → p × q %/ q = p.
- -
-Lemma mulKp p q : q != 0 → q × p %/ q = p.
- -
-Lemma divp_scalel c p q : (c *: p) %/ q = c *: (p %/ q).
- -
-Lemma modp_scaler c p d : c != 0 → p %% (c *: d) = (p %% d).
- -
-Lemma divp_scaler c p d : c != 0 → p %/ (c *: d) = c^-1 *: (p %/ d).
- -
-Lemma eqp_modpl d p q : p %= q → (p %% d) %= (q %% d).
- -
-Lemma eqp_divl d p q : p %= q → (p %/ d) %= (q %/ d).
- -
-Lemma eqp_modpr d p q : p %= q → (d %% p) %= (d %% q).
- -
-Lemma eqp_mod p1 p2 q1 q2 : p1 %= p2 → q1 %= q2 → p1 %% q1 %= p2 %% q2.
- -
-Lemma eqp_divr (d m n : {poly F}) : m %= n → (d %/ m) %= (d %/ n).
- -
-Lemma eqp_div p1 p2 q1 q2 : p1 %= p2 → q1 %= q2 → p1 %/ q1 %= p2 %/ q2.
- -
-Lemma eqp_gdcor p q r : q %= r → gdcop p q %= gdcop p r.
- -
-Lemma eqp_gdcol p q r : q %= r → gdcop q p %= gdcop r p.
- -
-Lemma eqp_rgdco_gdco q p : rgdcop q p %= gdcop q p.
- -
-Lemma modp_opp p q : (- p) %% q = - (p %% q).
- -
-Lemma divp_opp p q : (- p) %/ q = - (p %/ q).
- -
-Lemma modp_add d p q : (p + q) %% d = p %% d + q %% d.
- -
-Lemma modNp p q : (- p) %% q = - (p %% q).
- -
-Lemma divp_add d p q : (p + q) %/ d = p %/ d + q %/ d.
- -
-Lemma divp_addl_mul_small d q r :
- size r < size d → (q × d + r) %/ d = q.
- -
-Lemma modp_addl_mul_small d q r :
- size r < size d → (q × d + r) %% d = r.
- -
-Lemma divp_addl_mul d q r : d != 0 → (q × d + r) %/ d = q + r %/ d.
- -
-Lemma divpp d : d != 0 → d %/ d = 1.
- -
-Lemma leq_trunc_divp d m : size (m %/ d × d) ≤ size m.
- -
-Lemma divpK d p : d %| p → p %/ d × d = p.
- -
-Lemma divpKC d p : d %| p → d × (p %/ d) = p.
- -
-Lemma dvdp_eq_div d p q : d != 0 → d %| p → (q == p %/ d) = (q × d == p).
- -
-Lemma dvdp_eq_mul d p q : d != 0 → d %| p → (p == q × d) = (p %/ d == q).
- -
-Lemma divp_mulA d p q : d %| q → p × (q %/ d) = p × q %/ d.
- -
-Lemma divp_mulAC d m n : d %| m → m %/ d × n = m × n %/ d.
- -
-Lemma divp_mulCA d p q : d %| p → d %| q → p × (q %/ d) = q × (p %/ d).
- -
-Lemma expp_sub d m n : d != 0 → m ≥ n → (d ^+ (m - n))%N = d ^+ m %/ d ^+ n.
- -
-Lemma divp_pmul2l d q p : d != 0 → q != 0 → d × p %/ (d × q) = p %/ q.
- -
-Lemma divp_pmul2r d p q : d != 0 → p != 0 → q × d %/ (p × d) = q %/ p.
- -
-Lemma divp_divl r p q : q %/ p %/ r = q %/ (p × r).
- -
-Lemma divpAC d p q : q %/ d %/ p = q %/ p %/ d.
- -
-Lemma edivp_def p q : edivp p q = (0%N, p %/ q, p %% q).
- -
-Lemma divpE p q : p %/ q = (lead_coef q)^-(rscalp p q) *: (rdivp p q).
- -
-Lemma modpE p q : p %% q = (lead_coef q)^-(rscalp p q) *: (rmodp p q).
- -
-Lemma scalpE p q : scalp p q = 0%N.
- -
-
- Just to have it without importing the weak theory
-
-
-Lemma dvdpE p q : p %| q = rdvdp p q.
- -
-Variant edivp_spec m d : nat × {poly F} × {poly F} → Type :=
- EdivpSpec n q r of
- m = q × d + r & (d != 0) ==> (size r < size d) : edivp_spec m d (n, q, r).
- -
-Lemma edivpP m d : edivp_spec m d (edivp m d).
- -
-Lemma edivp_eq d q r : size r < size d → edivp (q × d + r) d = (0%N, q, r).
- -
-Lemma modp_mul p q m : (p × (q %% m)) %% m = (p × q) %% m.
- -
-Lemma dvdpP p q : reflect (∃ qq, p = qq × q) (q %| p).
- -
-Lemma Bezout_eq1_coprimepP : ∀ p q,
- reflect (∃ u, u.1 × p + u.2 × q = 1) (coprimep p q).
- -
-Lemma dvdp_gdcor p q : q != 0 → p %| (gdcop q p) × (q ^+ size p).
- -
-Lemma reducible_cubic_root p q :
- size p ≤ 4 → 1 < size q < size p → q %| p → {r | root p r}.
- -
-Lemma cubic_irreducible p :
- 1 < size p ≤ 4 → (∀ x, ~~ root p x) → irreducible_poly p.
- -
-Section FieldRingMap.
- -
-Variable rR : ringType.
- -
-Variable f : {rmorphism F → rR}.
- -
-Implicit Type a b : {poly F}.
- -
-Lemma redivp_map a b :
- redivp a^f b^f = (rscalp a b, (rdivp a b)^f, (rmodp a b)^f).
- -
-End FieldRingMap.
- -
-Section FieldMap.
- -
-Variable rR : idomainType.
- -
-Variable f : {rmorphism F → rR}.
- -
-Implicit Type a b : {poly F}.
- -
-Lemma edivp_map a b :
- edivp a^f b^f = (0%N, (a %/ b)^f, (a %% b)^f).
- -
-Lemma scalp_map p q : scalp p^f q^f = scalp p q.
- -
-Lemma map_divp p q : (p %/ q)^f = p^f %/ q^f.
- -
-Lemma map_modp p q : (p %% q)^f = p^f %% q^f.
- -
-Lemma egcdp_map p q :
- egcdp (map_poly f p) (map_poly f q)
- = (map_poly f (egcdp p q).1, map_poly f (egcdp p q).2).
- -
-Lemma dvdp_map p q : (p^f %| q^f) = (p %| q).
- -
-Lemma eqp_map p q : (p^f %= q^f) = (p %= q).
- -
-Lemma gcdp_map p q : (gcdp p q)^f = gcdp p^f q^f.
- -
-Lemma coprimep_map p q : coprimep p^f q^f = coprimep p q.
- -
-Lemma gdcop_rec_map p q n : (gdcop_rec p q n)^f = (gdcop_rec p^f q^f n).
- -
-Lemma gdcop_map p q : (gdcop p q)^f = (gdcop p^f q^f).
- -
-End FieldMap.
- -
-End FieldDivision.
- -
-End Field.
- -
-Module ClosedField.
- -
-Import Field.
- -
-Section closed.
- -
-Variable F : closedFieldType.
- -
-Lemma root_coprimep (p q : {poly F}):
- (∀ x, root p x → q.[x] != 0) → coprimep p q.
- -
-Lemma coprimepP (p q : {poly F}):
- reflect (∀ x, root p x → q.[x] != 0) (coprimep p q).
- -
-End closed.
- -
-End ClosedField.
- -
-End Pdiv.
- -
-Export Pdiv.Field.
-
-- -
-Variant edivp_spec m d : nat × {poly F} × {poly F} → Type :=
- EdivpSpec n q r of
- m = q × d + r & (d != 0) ==> (size r < size d) : edivp_spec m d (n, q, r).
- -
-Lemma edivpP m d : edivp_spec m d (edivp m d).
- -
-Lemma edivp_eq d q r : size r < size d → edivp (q × d + r) d = (0%N, q, r).
- -
-Lemma modp_mul p q m : (p × (q %% m)) %% m = (p × q) %% m.
- -
-Lemma dvdpP p q : reflect (∃ qq, p = qq × q) (q %| p).
- -
-Lemma Bezout_eq1_coprimepP : ∀ p q,
- reflect (∃ u, u.1 × p + u.2 × q = 1) (coprimep p q).
- -
-Lemma dvdp_gdcor p q : q != 0 → p %| (gdcop q p) × (q ^+ size p).
- -
-Lemma reducible_cubic_root p q :
- size p ≤ 4 → 1 < size q < size p → q %| p → {r | root p r}.
- -
-Lemma cubic_irreducible p :
- 1 < size p ≤ 4 → (∀ x, ~~ root p x) → irreducible_poly p.
- -
-Section FieldRingMap.
- -
-Variable rR : ringType.
- -
-Variable f : {rmorphism F → rR}.
- -
-Implicit Type a b : {poly F}.
- -
-Lemma redivp_map a b :
- redivp a^f b^f = (rscalp a b, (rdivp a b)^f, (rmodp a b)^f).
- -
-End FieldRingMap.
- -
-Section FieldMap.
- -
-Variable rR : idomainType.
- -
-Variable f : {rmorphism F → rR}.
- -
-Implicit Type a b : {poly F}.
- -
-Lemma edivp_map a b :
- edivp a^f b^f = (0%N, (a %/ b)^f, (a %% b)^f).
- -
-Lemma scalp_map p q : scalp p^f q^f = scalp p q.
- -
-Lemma map_divp p q : (p %/ q)^f = p^f %/ q^f.
- -
-Lemma map_modp p q : (p %% q)^f = p^f %% q^f.
- -
-Lemma egcdp_map p q :
- egcdp (map_poly f p) (map_poly f q)
- = (map_poly f (egcdp p q).1, map_poly f (egcdp p q).2).
- -
-Lemma dvdp_map p q : (p^f %| q^f) = (p %| q).
- -
-Lemma eqp_map p q : (p^f %= q^f) = (p %= q).
- -
-Lemma gcdp_map p q : (gcdp p q)^f = gcdp p^f q^f.
- -
-Lemma coprimep_map p q : coprimep p^f q^f = coprimep p q.
- -
-Lemma gdcop_rec_map p q n : (gdcop_rec p q n)^f = (gdcop_rec p^f q^f n).
- -
-Lemma gdcop_map p q : (gdcop p q)^f = (gdcop p^f q^f).
- -
-End FieldMap.
- -
-End FieldDivision.
- -
-End Field.
- -
-Module ClosedField.
- -
-Import Field.
- -
-Section closed.
- -
-Variable F : closedFieldType.
- -
-Lemma root_coprimep (p q : {poly F}):
- (∀ x, root p x → q.[x] != 0) → coprimep p q.
- -
-Lemma coprimepP (p q : {poly F}):
- reflect (∀ x, root p x → q.[x] != 0) (coprimep p q).
- -
-End closed.
- -
-End ClosedField.
- -
-End Pdiv.
- -
-Export Pdiv.Field.
-