From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.algebra.poly.html | 2217 +++++++++++++++++++++++++++++++ 1 file changed, 2217 insertions(+) create mode 100644 docs/htmldoc/mathcomp.algebra.poly.html (limited to 'docs/htmldoc/mathcomp.algebra.poly.html') diff --git a/docs/htmldoc/mathcomp.algebra.poly.html b/docs/htmldoc/mathcomp.algebra.poly.html new file mode 100644 index 0000000..f28edfc --- /dev/null +++ b/docs/htmldoc/mathcomp.algebra.poly.html @@ -0,0 +1,2217 @@ + + + + + +mathcomp.algebra.poly + + + + +
+ + + +
+ +

Library mathcomp.algebra.poly

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ This file provides a library for univariate polynomials over ring + structures; it also provides an extended theory for polynomials whose + coefficients range over commutative rings and integral domains. + +
+ + {poly R} == the type of polynomials with coefficients of type R, + represented as lists with a non zero last element + (big endian representation); the coeficient type R + must have a canonical ringType structure cR. In fact + {poly R} denotes the concrete type polynomial cR; R + is just a phantom argument that lets type inference + reconstruct the (hidden) ringType structure cR. + p : seq R == the big-endian sequence of coefficients of p, via + the coercion polyseq : polynomial >-> seq. + Poly s == the polynomial with coefficient sequence s (ignoring + trailing zeroes). + \poly(i < n) E(i) == the polynomial of degree at most n - 1 whose + coefficients are given by the general term E(i) + 0, 1, - p, p + q, == the usual ring operations: {poly R} has a canonical + p * q, p ^+ n, ... ringType structure, which is commutative / integral + when R is commutative / integral, respectively. + polyC c, c%:P == the constant polynomial c + 'X == the (unique) variable + 'X^n == a power of 'X; 'X^0 is 1, 'X^1 is convertible to 'X + p`i == the coefficient of 'X^i in p; this is in fact just + the ring_scope notation generic seq-indexing using + nth 0%R, combined with the polyseq coercion. + coefp i == the linear function p |-> p`i (self-exapanding). + size p == 1 + the degree of p, or 0 if p = 0 (this is the + generic seq function combined with polyseq). + lead_coef p == the coefficient of the highest monomial in p, or 0 + if p = 0 (hence lead_coef p = 0 iff p = 0) + p \is monic <=> lead_coef p == 1 (0 is not monic). + p \is a polyOver S <=> the coefficients of p satisfy S; S should have a + key that should be (at least) an addrPred. + p. [x] == the evaluation of a polynomial p at a point x using + the Horner scheme +

The multi-rule hornerE (resp., hornerE_comm) unwinds

+ + horner evaluation of a polynomial expression (resp., + in a non commutative ring, with side conditions). + p^` == formal derivative of p + p^`(n) == formal n-derivative of p + p^`N(n) == formal n-derivative of p divided by n! + p \Po q == polynomial composition; because this is naturally a + a linear morphism in the first argument, this + notation is transposed (q comes before p for redex + selection, etc). + := \sum(i < size p) p`i *: q ^+ i + comm_poly p x == x and p. [x] commute; this is a sufficient condition + for evaluating (q * p). [x] as q. [x] * p. [x] when R + is not commutative. + comm_coef p x == x commutes with all the coefficients of p (clearly, + this implies comm_poly p x). + root p x == x is a root of p, i.e., p. [x] = 0 + n.-unity_root x == x is an nth root of unity, i.e., a root of 'X^n - 1 + n.-primitive_root x == x is a primitive nth root of unity, i.e., n is the + least positive integer m > 0 such that x ^+ m = 1. +

The submodule poly.UnityRootTheory can be used to

+ + import selectively the part of the theory of roots + of unity that doesn't mention polynomials explicitly + map_poly f p == the image of the polynomial by the function f (which + (locally, p^f) is usually a ring morphism). + p^:P == p lifted to {poly {poly R}} (:= map_poly polyC p). + commr_rmorph f u == u commutes with the image of f (i.e., with all f x). + horner_morph cfu == given cfu : commr_rmorph f u, the function mapping p + to the value of map_poly f p at u; this is a ring + morphism from {poly R} to the codomain of f when f + is a ring morphism. + horner_eval u == the function mapping p to p. [u]; this function can + only be used for u in a commutative ring, so it is + always a linear ring morphism from {poly R} to R. + diff_roots x y == x and y are distinct roots; if R is a field, this + just means x != y, but this concept is generalized + to the case where R is only a ring with units (i.e., + a unitRingType); in which case it means that x and y + commute, and that the difference x - y is a unit + (i.e., has a multiplicative inverse) in R. + to just x != y). + uniq_roots s == s is a sequence or pairwise distinct roots, in the + sense of diff_roots p above. +

We only show that these operations and properties are transferred by

+ + morphisms whose domain is a field (thus ensuring injectivity). + We prove the factor_theorem, and the max_poly_roots inequality relating + the number of distinct roots of a polynomial and its size. + The some polynomial lemmas use following suffix interpretation : + C - constant polynomial (as in polyseqC : a%:P = nseq (a != 0) a). + X - the polynomial variable 'X (as in coefX : 'X`i = (i == 1%N)). + Xn - power of 'X (as in monicXn : monic 'X^n). +
+
+ +
+Set Implicit Arguments.
+ +
+Import GRing.Theory.
+Local Open Scope ring_scope.
+ +
+Reserved Notation "{ 'poly' T }" (at level 0, format "{ 'poly' T }").
+Reserved Notation "c %:P" (at level 2, format "c %:P").
+Reserved Notation "p ^:P" (at level 2, format "p ^:P").
+Reserved Notation "'X" (at level 0).
+Reserved Notation "''X^' n" (at level 3, n at level 2, format "''X^' n").
+Reserved Notation "\poly_ ( i < n ) E"
+  (at level 36, E at level 36, i, n at level 50,
+   format "\poly_ ( i < n ) E").
+Reserved Notation "p \Po q" (at level 50).
+Reserved Notation "p ^`N ( n )" (at level 8, format "p ^`N ( n )").
+Reserved Notation "n .-unity_root" (at level 2, format "n .-unity_root").
+Reserved Notation "n .-primitive_root"
+  (at level 2, format "n .-primitive_root").
+ +
+ +
+Section Polynomial.
+ +
+Variable R : ringType.
+ +
+
+ +
+ Defines a polynomial as a sequence with <> 0 last element +
+
+Record polynomial := Polynomial {polyseq :> seq R; _ : last 1 polyseq != 0}.
+ +
+Canonical polynomial_subType := Eval hnf in [subType for polyseq].
+Definition polynomial_eqMixin := Eval hnf in [eqMixin of polynomial by <:].
+Canonical polynomial_eqType := Eval hnf in EqType polynomial polynomial_eqMixin.
+Definition polynomial_choiceMixin := [choiceMixin of polynomial by <:].
+Canonical polynomial_choiceType :=
+  Eval hnf in ChoiceType polynomial polynomial_choiceMixin.
+ +
+Lemma poly_inj : injective polyseq.
+ +
+Definition poly_of of phant R := polynomial.
+Identity Coercion type_poly_of : poly_of >-> polynomial.
+ +
+Definition coefp_head h i (p : poly_of (Phant R)) := let: tt := h in p`_i.
+ +
+End Polynomial.
+ +
+
+ +
+ We need to break off the section here to let the argument scope + directives take effect. +
+
+Notation "{ 'poly' T }" := (poly_of (Phant T)).
+Notation coefp i := (coefp_head tt i).
+ +
+Section PolynomialTheory.
+ +
+Variable R : ringType.
+Implicit Types (a b c x y z : R) (p q r d : {poly R}).
+ +
+Canonical poly_subType := Eval hnf in [subType of {poly R}].
+Canonical poly_eqType := Eval hnf in [eqType of {poly R}].
+Canonical poly_choiceType := Eval hnf in [choiceType of {poly R}].
+ +
+Definition lead_coef p := p`_(size p).-1.
+Lemma lead_coefE p : lead_coef p = p`_(size p).-1.
+ +
+Definition poly_nil := @Polynomial R [::] (oner_neq0 R).
+Definition polyC c : {poly R} := insubd poly_nil [:: c].
+ +
+ +
+
+ +
+ Remember the boolean (c != 0) is coerced to 1 if true and 0 if false +
+
+Lemma polyseqC c : c%:P = nseq (c != 0) c :> seq R.
+ +
+Lemma size_polyC c : size c%:P = (c != 0).
+ +
+Lemma coefC c i : c%:P`_i = if i == 0%N then c else 0.
+ +
+Lemma polyCK : cancel polyC (coefp 0).
+ +
+Lemma polyC_inj : injective polyC.
+ +
+Lemma lead_coefC c : lead_coef c%:P = c.
+ +
+
+ +
+ Extensional interpretation (poly <=> nat -> R) +
+
+Lemma polyP p q : nth 0 p =1 nth 0 q p = q.
+ +
+Lemma size1_polyC p : size p 1 p = (p`_0)%:P.
+ +
+
+ +
+ Builds a polynomial by extension. +
+
+Definition cons_poly c p : {poly R} :=
+  if p is Polynomial ((_ :: _) as s) ns then
+    @Polynomial R (c :: s) ns
+  else c%:P.
+ +
+Lemma polyseq_cons c p :
+  cons_poly c p = (if ~~ nilp p then c :: p else c%:P) :> seq R.
+ +
+Lemma size_cons_poly c p :
+  size (cons_poly c p) = (if nilp p && (c == 0) then 0%N else (size p).+1).
+ +
+Lemma coef_cons c p i : (cons_poly c p)`_i = if i == 0%N then c else p`_i.-1.
+ +
+
+ +
+ Build a polynomial directly from a list of coefficients. +
+
+Definition Poly := foldr cons_poly 0%:P.
+ +
+Lemma PolyK c s : last c s != 0 Poly s = s :> seq R.
+ +
+Lemma polyseqK p : Poly p = p.
+ +
+Lemma size_Poly s : size (Poly s) size s.
+ +
+Lemma coef_Poly s i : (Poly s)`_i = s`_i.
+ +
+
+ +
+ Build a polynomial from an infinite sequence of coefficients and a bound. +
+
+Definition poly_expanded_def n E := Poly (mkseq E n).
+Fact poly_key : unit.
+Definition poly := locked_with poly_key poly_expanded_def.
+Canonical poly_unlockable := [unlockable fun poly].
+ +
+Lemma polyseq_poly n E :
+  E n.-1 != 0 \poly_(i < n) E i = mkseq [eta E] n :> seq R.
+ +
+Lemma size_poly n E : size (\poly_(i < n) E i) n.
+ +
+Lemma size_poly_eq n E : E n.-1 != 0 size (\poly_(i < n) E i) = n.
+ +
+Lemma coef_poly n E k : (\poly_(i < n) E i)`_k = (if k < n then E k else 0).
+ +
+Lemma lead_coef_poly n E :
+  n > 0 E n.-1 != 0 lead_coef (\poly_(i < n) E i) = E n.-1.
+ +
+Lemma coefK p : \poly_(i < size p) p`_i = p.
+ +
+
+ +
+ Zmodule structure for polynomial +
+
+Definition add_poly_def p q := \poly_(i < maxn (size p) (size q)) (p`_i + q`_i).
+Fact add_poly_key : unit.
+Definition add_poly := locked_with add_poly_key add_poly_def.
+Canonical add_poly_unlockable := [unlockable fun add_poly].
+ +
+Definition opp_poly_def p := \poly_(i < size p) - p`_i.
+Fact opp_poly_key : unit.
+Definition opp_poly := locked_with opp_poly_key opp_poly_def.
+Canonical opp_poly_unlockable := [unlockable fun opp_poly].
+ +
+Fact coef_add_poly p q i : (add_poly p q)`_i = p`_i + q`_i.
+ +
+Fact coef_opp_poly p i : (opp_poly p)`_i = - p`_i.
+ +
+Fact add_polyA : associative add_poly.
+ +
+Fact add_polyC : commutative add_poly.
+ +
+Fact add_poly0 : left_id 0%:P add_poly.
+ +
+Fact add_polyN : left_inverse 0%:P opp_poly add_poly.
+ +
+Definition poly_zmodMixin :=
+  ZmodMixin add_polyA add_polyC add_poly0 add_polyN.
+ +
+Canonical poly_zmodType := Eval hnf in ZmodType {poly R} poly_zmodMixin.
+Canonical polynomial_zmodType :=
+  Eval hnf in ZmodType (polynomial R) poly_zmodMixin.
+ +
+
+ +
+ Properties of the zero polynomial +
+
+Lemma polyC0 : 0%:P = 0 :> {poly R}.
+ +
+Lemma polyseq0 : (0 : {poly R}) = [::] :> seq R.
+ +
+Lemma size_poly0 : size (0 : {poly R}) = 0%N.
+ +
+Lemma coef0 i : (0 : {poly R})`_i = 0.
+ +
+Lemma lead_coef0 : lead_coef 0 = 0 :> R.
+ +
+Lemma size_poly_eq0 p : (size p == 0%N) = (p == 0).
+ +
+Lemma size_poly_leq0 p : (size p 0) = (p == 0).
+ +
+Lemma size_poly_leq0P p : reflect (p = 0) (size p 0%N).
+ +
+Lemma size_poly_gt0 p : (0 < size p) = (p != 0).
+ +
+Lemma nil_poly p : nilp p = (p == 0).
+ +
+Lemma poly0Vpos p : {p = 0} + {size p > 0}.
+ +
+Lemma polySpred p : p != 0 size p = (size p).-1.+1.
+ +
+Lemma lead_coef_eq0 p : (lead_coef p == 0) = (p == 0).
+ +
+Lemma polyC_eq0 (c : R) : (c%:P == 0) = (c == 0).
+ +
+Lemma size_poly1P p : reflect (exists2 c, c != 0 & p = c%:P) (size p == 1%N).
+ +
+Lemma leq_sizeP p i : reflect ( j, i j p`_j = 0) (size p i).
+ +
+
+ +
+ Size, leading coef, morphism properties of coef +
+
+ +
+Lemma coefD p q i : (p + q)`_i = p`_i + q`_i.
+ +
+Lemma coefN p i : (- p)`_i = - p`_i.
+ +
+Lemma coefB p q i : (p - q)`_i = p`_i - q`_i.
+ +
+Canonical coefp_additive i :=
+  Additive ((fun p(coefB p)^~ i) : additive (coefp i)).
+ +
+Lemma coefMn p n i : (p *+ n)`_i = p`_i *+ n.
+ +
+Lemma coefMNn p n i : (p *- n)`_i = p`_i *- n.
+ +
+Lemma coef_sum I (r : seq I) (P : pred I) (F : I {poly R}) k :
+  (\sum_(i <- r | P i) F i)`_k = \sum_(i <- r | P i) (F i)`_k.
+ +
+Lemma polyC_add : {morph polyC : a b / a + b}.
+ +
+Lemma polyC_opp : {morph polyC : c / - c}.
+ +
+Lemma polyC_sub : {morph polyC : a b / a - b}.
+ +
+Canonical polyC_additive := Additive polyC_sub.
+ +
+Lemma polyC_muln n : {morph polyC : c / c *+ n}.
+ +
+Lemma size_opp p : size (- p) = size p.
+ +
+Lemma lead_coef_opp p : lead_coef (- p) = - lead_coef p.
+ +
+Lemma size_add p q : size (p + q) maxn (size p) (size q).
+ +
+Lemma size_addl p q : size p > size q size (p + q) = size p.
+ +
+Lemma size_sum I (r : seq I) (P : pred I) (F : I {poly R}) :
+  size (\sum_(i <- r | P i) F i) \max_(i <- r | P i) size (F i).
+ +
+Lemma lead_coefDl p q : size p > size q lead_coef (p + q) = lead_coef p.
+ +
+
+ +
+ Polynomial ring structure. +
+
+ +
+Definition mul_poly_def p q :=
+  \poly_(i < (size p + size q).-1) (\sum_(j < i.+1) p`_j × q`_(i - j)).
+Fact mul_poly_key : unit.
+Definition mul_poly := locked_with mul_poly_key mul_poly_def.
+Canonical mul_poly_unlockable := [unlockable fun mul_poly].
+ +
+Fact coef_mul_poly p q i :
+  (mul_poly p q)`_i = \sum_(j < i.+1) p`_j × q`_(i - j)%N.
+ +
+Fact coef_mul_poly_rev p q i :
+  (mul_poly p q)`_i = \sum_(j < i.+1) p`_(i - j)%N × q`_j.
+ +
+Fact mul_polyA : associative mul_poly.
+ +
+Fact mul_1poly : left_id 1%:P mul_poly.
+ +
+Fact mul_poly1 : right_id 1%:P mul_poly.
+ +
+Fact mul_polyDl : left_distributive mul_poly +%R.
+ +
+Fact mul_polyDr : right_distributive mul_poly +%R.
+ +
+Fact poly1_neq0 : 1%:P != 0 :> {poly R}.
+ +
+Definition poly_ringMixin :=
+  RingMixin mul_polyA mul_1poly mul_poly1 mul_polyDl mul_polyDr poly1_neq0.
+ +
+Canonical poly_ringType := Eval hnf in RingType {poly R} poly_ringMixin.
+Canonical polynomial_ringType :=
+  Eval hnf in RingType (polynomial R) poly_ringMixin.
+ +
+Lemma polyC1 : 1%:P = 1 :> {poly R}.
+ +
+Lemma polyseq1 : (1 : {poly R}) = [:: 1] :> seq R.
+ +
+Lemma size_poly1 : size (1 : {poly R}) = 1%N.
+ +
+Lemma coef1 i : (1 : {poly R})`_i = (i == 0%N)%:R.
+ +
+Lemma lead_coef1 : lead_coef 1 = 1 :> R.
+ +
+Lemma coefM p q i : (p × q)`_i = \sum_(j < i.+1) p`_j × q`_(i - j)%N.
+ +
+Lemma coefMr p q i : (p × q)`_i = \sum_(j < i.+1) p`_(i - j)%N × q`_j.
+ +
+Lemma size_mul_leq p q : size (p × q) (size p + size q).-1.
+ +
+Lemma mul_lead_coef p q :
+  lead_coef p × lead_coef q = (p × q)`_(size p + size q).-2.
+ +
+Lemma size_proper_mul p q :
+  lead_coef p × lead_coef q != 0 size (p × q) = (size p + size q).-1.
+ +
+Lemma lead_coef_proper_mul p q :
+  let c := lead_coef p × lead_coef q in c != 0 lead_coef (p × q) = c.
+ +
+Lemma size_prod_leq (I : finType) (P : pred I) (F : I {poly R}) :
+  size (\prod_(i | P i) F i) (\sum_(i | P i) size (F i)).+1 - #|P|.
+ +
+Lemma coefCM c p i : (c%:P × p)`_i = c × p`_i.
+ +
+Lemma coefMC c p i : (p × c%:P)`_i = p`_i × c.
+ +
+Lemma polyC_mul : {morph polyC : a b / a × b}.
+ +
+Fact polyC_multiplicative : multiplicative polyC.
+ Canonical polyC_rmorphism := AddRMorphism polyC_multiplicative.
+ +
+Lemma polyC_exp n : {morph polyC : c / c ^+ n}.
+ +
+Lemma size_exp_leq p n : size (p ^+ n) ((size p).-1 × n).+1.
+ +
+Lemma size_Msign p n : size ((-1) ^+ n × p) = size p.
+ +
+Fact coefp0_multiplicative : multiplicative (coefp 0 : {poly R} R).
+ +
+Canonical coefp0_rmorphism := AddRMorphism coefp0_multiplicative.
+ +
+
+ +
+ Algebra structure of polynomials. +
+
+Definition scale_poly_def a (p : {poly R}) := \poly_(i < size p) (a × p`_i).
+Fact scale_poly_key : unit.
+Definition scale_poly := locked_with scale_poly_key scale_poly_def.
+Canonical scale_poly_unlockable := [unlockable fun scale_poly].
+ +
+Fact scale_polyE a p : scale_poly a p = a%:P × p.
+ +
+Fact scale_polyA a b p : scale_poly a (scale_poly b p) = scale_poly (a × b) p.
+ +
+Fact scale_1poly : left_id 1 scale_poly.
+ +
+Fact scale_polyDr a : {morph scale_poly a : p q / p + q}.
+ +
+Fact scale_polyDl p : {morph scale_poly^~ p : a b / a + b}.
+ +
+Fact scale_polyAl a p q : scale_poly a (p × q) = scale_poly a p × q.
+ +
+Definition poly_lmodMixin :=
+  LmodMixin scale_polyA scale_1poly scale_polyDr scale_polyDl.
+ +
+Canonical poly_lmodType :=
+  Eval hnf in LmodType R {poly R} poly_lmodMixin.
+Canonical polynomial_lmodType :=
+  Eval hnf in LmodType R (polynomial R) poly_lmodMixin.
+Canonical poly_lalgType :=
+  Eval hnf in LalgType R {poly R} scale_polyAl.
+Canonical polynomial_lalgType :=
+  Eval hnf in LalgType R (polynomial R) scale_polyAl.
+ +
+Lemma mul_polyC a p : a%:P × p = a *: p.
+ +
+Lemma alg_polyC a : a%:A = a%:P :> {poly R}.
+ +
+Lemma coefZ a p i : (a *: p)`_i = a × p`_i.
+ +
+Lemma size_scale_leq a p : size (a *: p) size p.
+ +
+Canonical coefp_linear i : {scalar {poly R}} :=
+  AddLinear ((fun a(coefZ a) ^~ i) : scalable_for *%R (coefp i)).
+Canonical coefp0_lrmorphism := [lrmorphism of coefp 0].
+ +
+
+ +
+ The indeterminate, at last! +
+
+Definition polyX_def := Poly [:: 0; 1].
+Fact polyX_key : unit.
+Definition polyX : {poly R} := locked_with polyX_key polyX_def.
+Canonical polyX_unlockable := [unlockable of polyX].
+ +
+Lemma polyseqX : 'X = [:: 0; 1] :> seq R.
+ +
+Lemma size_polyX : size 'X = 2.
+ +
+Lemma polyX_eq0 : ('X == 0) = false.
+ +
+Lemma coefX i : 'X`_i = (i == 1%N)%:R.
+ +
+Lemma lead_coefX : lead_coef 'X = 1.
+ +
+Lemma commr_polyX p : GRing.comm p 'X.
+ +
+Lemma coefMX p i : (p × 'X)`_i = (if (i == 0)%N then 0 else p`_i.-1).
+ +
+Lemma coefXM p i : ('X × p)`_i = (if (i == 0)%N then 0 else p`_i.-1).
+ +
+Lemma cons_poly_def p a : cons_poly a p = p × 'X + a%:P.
+ +
+Lemma poly_ind (K : {poly R} Type) :
+  K 0 ( p c, K p K (p × 'X + c%:P)) ( p, K p).
+ +
+Lemma polyseqXsubC a : 'X - a%:P = [:: - a; 1] :> seq R.
+ +
+Lemma size_XsubC a : size ('X - a%:P) = 2%N.
+ +
+Lemma size_XaddC b : size ('X + b%:P) = 2.
+ +
+Lemma lead_coefXsubC a : lead_coef ('X - a%:P) = 1.
+ +
+Lemma polyXsubC_eq0 a : ('X - a%:P == 0) = false.
+ +
+Lemma size_MXaddC p c :
+  size (p × 'X + c%:P) = (if (p == 0) && (c == 0) then 0%N else (size p).+1).
+ +
+Lemma polyseqMX p : p != 0 p × 'X = 0 :: p :> seq R.
+ +
+Lemma size_mulX p : p != 0 size (p × 'X) = (size p).+1.
+ +
+Lemma lead_coefMX p : lead_coef (p × 'X) = lead_coef p.
+ +
+Lemma size_XmulC a : a != 0 size ('X × a%:P) = 2.
+ +
+ +
+Lemma coefXn n i : 'X^n`_i = (i == n)%:R.
+ +
+Lemma polyseqXn n : 'X^n = rcons (nseq n 0) 1 :> seq R.
+ +
+Lemma size_polyXn n : size 'X^n = n.+1.
+ +
+Lemma commr_polyXn p n : GRing.comm p 'X^n.
+ +
+Lemma lead_coefXn n : lead_coef 'X^n = 1.
+ +
+Lemma polyseqMXn n p : p != 0 p × 'X^n = ncons n 0 p :> seq R.
+ +
+Lemma coefMXn n p i : (p × 'X^n)`_i = if i < n then 0 else p`_(i - n).
+ +
+Lemma coefXnM n p i : ('X^n × p)`_i = if i < n then 0 else p`_(i - n).
+ +
+
+ +
+ Expansion of a polynomial as an indexed sum +
+
+Lemma poly_def n E : \poly_(i < n) E i = \sum_(i < n) E i *: 'X^i.
+ +
+
+ +
+ Monic predicate +
+
+Definition monic := [qualify p | lead_coef p == 1].
+Fact monic_key : pred_key monic.
+Canonical monic_keyed := KeyedQualifier monic_key.
+ +
+Lemma monicE p : (p \is monic) = (lead_coef p == 1).
+Lemma monicP p : reflect (lead_coef p = 1) (p \is monic).
+ +
+Lemma monic1 : 1 \is monic.
+Lemma monicX : 'X \is monic.
+Lemma monicXn n : 'X^n \is monic.
+ +
+Lemma monic_neq0 p : p \is monic p != 0.
+ +
+Lemma lead_coef_monicM p q : p \is monic lead_coef (p × q) = lead_coef q.
+ +
+Lemma lead_coef_Mmonic p q : q \is monic lead_coef (p × q) = lead_coef p.
+ +
+Lemma size_monicM p q :
+  p \is monic q != 0 size (p × q) = (size p + size q).-1.
+ +
+Lemma size_Mmonic p q :
+  p != 0 q \is monic size (p × q) = (size p + size q).-1.
+ +
+Lemma monicMl p q : p \is monic (p × q \is monic) = (q \is monic).
+ +
+Lemma monicMr p q : q \is monic (p × q \is monic) = (p \is monic).
+ +
+Fact monic_mulr_closed : mulr_closed monic.
+ Canonical monic_mulrPred := MulrPred monic_mulr_closed.
+ +
+Lemma monic_exp p n : p \is monic p ^+ n \is monic.
+ +
+Lemma monic_prod I rI (P : pred I) (F : I {poly R}):
+  ( i, P i F i \is monic) \prod_(i <- rI | P i) F i \is monic.
+ +
+Lemma monicXsubC c : 'X - c%:P \is monic.
+ +
+Lemma monic_prod_XsubC I rI (P : pred I) (F : I R) :
+  \prod_(i <- rI | P i) ('X - (F i)%:P) \is monic.
+ +
+Lemma size_prod_XsubC I rI (F : I R) :
+  size (\prod_(i <- rI) ('X - (F i)%:P)) = (size rI).+1.
+ +
+Lemma size_exp_XsubC n a : size (('X - a%:P) ^+ n) = n.+1.
+ +
+
+ +
+ Some facts about regular elements. +
+
+ +
+Lemma lreg_lead p : GRing.lreg (lead_coef p) GRing.lreg p.
+ +
+Lemma rreg_lead p : GRing.rreg (lead_coef p) GRing.rreg p.
+ +
+Lemma lreg_lead0 p : GRing.lreg (lead_coef p) p != 0.
+ +
+Lemma rreg_lead0 p : GRing.rreg (lead_coef p) p != 0.
+ +
+Lemma lreg_size c p : GRing.lreg c size (c *: p) = size p.
+ +
+Lemma lreg_polyZ_eq0 c p : GRing.lreg c (c *: p == 0) = (p == 0).
+ +
+Lemma lead_coef_lreg c p :
+  GRing.lreg c lead_coef (c *: p) = c × lead_coef p.
+ +
+Lemma rreg_size c p : GRing.rreg c size (p × c%:P) = size p.
+ +
+Lemma rreg_polyMC_eq0 c p : GRing.rreg c (p × c%:P == 0) = (p == 0).
+ +
+Lemma rreg_div0 q r d :
+    GRing.rreg (lead_coef d) size r < size d
+  (q × d + r == 0) = (q == 0) && (r == 0).
+ +
+Lemma monic_comreg p :
+  p \is monic GRing.comm p (lead_coef p)%:P GRing.rreg (lead_coef p).
+ +
+
+ +
+ Horner evaluation of polynomials +
+
+Implicit Types s rs : seq R.
+Fixpoint horner_rec s x := if s is a :: s' then horner_rec s' x × x + a else 0.
+Definition horner p := horner_rec p.
+ +
+ +
+Lemma horner0 x : (0 : {poly R}).[x] = 0.
+ +
+Lemma hornerC c x : (c%:P).[x] = c.
+ +
+Lemma hornerX x : 'X.[x] = x.
+ +
+Lemma horner_cons p c x : (cons_poly c p).[x] = p.[x] × x + c.
+ +
+Lemma horner_coef0 p : p.[0] = p`_0.
+ +
+Lemma hornerMXaddC p c x : (p × 'X + c%:P).[x] = p.[x] × x + c.
+ +
+Lemma hornerMX p x : (p × 'X).[x] = p.[x] × x.
+ +
+Lemma horner_Poly s x : (Poly s).[x] = horner_rec s x.
+ +
+Lemma horner_coef p x : p.[x] = \sum_(i < size p) p`_i × x ^+ i.
+ +
+Lemma horner_coef_wide n p x :
+  size p n p.[x] = \sum_(i < n) p`_i × x ^+ i.
+ +
+Lemma horner_poly n E x : (\poly_(i < n) E i).[x] = \sum_(i < n) E i × x ^+ i.
+ +
+Lemma hornerN p x : (- p).[x] = - p.[x].
+ +
+Lemma hornerD p q x : (p + q).[x] = p.[x] + q.[x].
+ +
+Lemma hornerXsubC a x : ('X - a%:P).[x] = x - a.
+ +
+Lemma horner_sum I (r : seq I) (P : pred I) F x :
+  (\sum_(i <- r | P i) F i).[x] = \sum_(i <- r | P i) (F i).[x].
+ +
+Lemma hornerCM a p x : (a%:P × p).[x] = a × p.[x].
+ +
+Lemma hornerZ c p x : (c *: p).[x] = c × p.[x].
+ +
+Lemma hornerMn n p x : (p *+ n).[x] = p.[x] *+ n.
+ +
+Definition comm_coef p x := i, p`_i × x = x × p`_i.
+ +
+Definition comm_poly p x := x × p.[x] = p.[x] × x.
+ +
+Lemma comm_coef_poly p x : comm_coef p x comm_poly p x.
+ +
+Lemma comm_poly0 x : comm_poly 0 x.
+ +
+Lemma comm_poly1 x : comm_poly 1 x.
+ +
+Lemma comm_polyX x : comm_poly 'X x.
+ +
+Lemma hornerM_comm p q x : comm_poly q x (p × q).[x] = p.[x] × q.[x].
+ +
+Lemma horner_exp_comm p x n : comm_poly p x (p ^+ n).[x] = p.[x] ^+ n.
+ +
+Lemma hornerXn x n : ('X^n).[x] = x ^+ n.
+ +
+Definition hornerE_comm :=
+  (hornerD, hornerN, hornerX, hornerC, horner_cons,
+   simp, hornerCM, hornerZ,
+   (fun p xhornerM_comm p (comm_polyX x))).
+ +
+Definition root p : pred R := fun xp.[x] == 0.
+ +
+Lemma mem_root p x : x \in root p = (p.[x] == 0).
+ +
+Lemma rootE p x : (root p x = (p.[x] == 0)) × ((x \in root p) = (p.[x] == 0)).
+ +
+Lemma rootP p x : reflect (p.[x] = 0) (root p x).
+ +
+Lemma rootPt p x : reflect (p.[x] == 0) (root p x).
+ +
+Lemma rootPf p x : reflect ((p.[x] == 0) = false) (~~ root p x).
+ +
+Lemma rootC a x : root a%:P x = (a == 0).
+ +
+Lemma root0 x : root 0 x.
+ +
+Lemma root1 x : ~~ root 1 x.
+ +
+Lemma rootX x : root 'X x = (x == 0).
+ +
+Lemma rootN p x : root (- p) x = root p x.
+ +
+Lemma root_size_gt1 a p : p != 0 root p a 1 < size p.
+ +
+Lemma root_XsubC a x : root ('X - a%:P) x = (x == a).
+ +
+Lemma root_XaddC a x : root ('X + a%:P) x = (x == - a).
+ +
+Theorem factor_theorem p a : reflect ( q, p = q × ('X - a%:P)) (root p a).
+ +
+Lemma multiplicity_XsubC p a :
+  {m | exists2 q, (p != 0) ==> ~~ root q a & p = q × ('X - a%:P) ^+ m}.
+ +
+
+ +
+ Roots of unity. +
+
+ +
+Lemma size_Xn_sub_1 n : n > 0 size ('X^n - 1 : {poly R}) = n.+1.
+ +
+Lemma monic_Xn_sub_1 n : n > 0 'X^n - 1 \is monic.
+ +
+Definition root_of_unity n : pred R := root ('X^n - 1).
+ +
+Lemma unity_rootE n z : n.-unity_root z = (z ^+ n == 1).
+ +
+Lemma unity_rootP n z : reflect (z ^+ n = 1) (n.-unity_root z).
+ +
+Definition primitive_root_of_unity n z :=
+  (n > 0) && [ i : 'I_n, i.+1.-unity_root z == (i.+1 == n)].
+ +
+Lemma prim_order_exists n z :
+  n > 0 z ^+ n = 1 {m | m.-primitive_root z & (m %| n)}.
+ +
+Section OnePrimitive.
+ +
+Variables (n : nat) (z : R).
+Hypothesis prim_z : n.-primitive_root z.
+ +
+Lemma prim_order_gt0 : n > 0.
+Let n_gt0 := prim_order_gt0.
+ +
+Lemma prim_expr_order : z ^+ n = 1.
+ +
+Lemma prim_expr_mod i : z ^+ (i %% n) = z ^+ i.
+ +
+Lemma prim_order_dvd i : (n %| i) = (z ^+ i == 1).
+ +
+Lemma eq_prim_root_expr i j : (z ^+ i == z ^+ j) = (i == j %[mod n]).
+ +
+Lemma exp_prim_root k : (n %/ gcdn k n).-primitive_root (z ^+ k).
+ +
+Lemma dvdn_prim_root m : (m %| n)%N m.-primitive_root (z ^+ (n %/ m)).
+ +
+End OnePrimitive.
+ +
+Lemma prim_root_exp_coprime n z k :
+  n.-primitive_root z n.-primitive_root (z ^+ k) = coprime k n.
+ +
+
+ +
+ Lifting a ring predicate to polynomials. +
+
+ +
+Definition polyOver (S : pred_class) :=
+  [qualify a p : {poly R} | all (mem S) p].
+ +
+Fact polyOver_key S : pred_key (polyOver S).
+Canonical polyOver_keyed S := KeyedQualifier (polyOver_key S).
+ +
+Lemma polyOverS (S1 S2 : pred_class) :
+  {subset S1 S2} {subset polyOver S1 polyOver S2}.
+ +
+Lemma polyOver0 S : 0 \is a polyOver S.
+ +
+Lemma polyOver_poly (S : pred_class) n E :
+  ( i, i < n E i \in S) \poly_(i < n) E i \is a polyOver S.
+ +
+Section PolyOverAdd.
+ +
+Variables (S : predPredType R) (addS : addrPred S) (kS : keyed_pred addS).
+ +
+Lemma polyOverP {p} : reflect ( i, p`_i \in kS) (p \in polyOver kS).
+ +
+Lemma polyOverC c : (c%:P \in polyOver kS) = (c \in kS).
+ +
+Fact polyOver_addr_closed : addr_closed (polyOver kS).
+Canonical polyOver_addrPred := AddrPred polyOver_addr_closed.
+ +
+End PolyOverAdd.
+ +
+Fact polyOverNr S (addS : zmodPred S) (kS : keyed_pred addS) :
+  oppr_closed (polyOver kS).
+Canonical polyOver_opprPred S addS kS := OpprPred (@polyOverNr S addS kS).
+Canonical polyOver_zmodPred S addS kS := ZmodPred (@polyOverNr S addS kS).
+ +
+Section PolyOverSemiring.
+ +
+Context (S : pred_class) (ringS : @semiringPred R S) (kS : keyed_pred ringS).
+ +
+Fact polyOver_mulr_closed : mulr_closed (polyOver kS).
+Canonical polyOver_mulrPred := MulrPred polyOver_mulr_closed.
+Canonical polyOver_semiringPred := SemiringPred polyOver_mulr_closed.
+ +
+Lemma polyOverZ : {in kS & polyOver kS, c p, c *: p \is a polyOver kS}.
+ +
+Lemma polyOverX : 'X \in polyOver kS.
+ +
+Lemma rpred_horner : {in polyOver kS & kS, p x, p.[x] \in kS}.
+ +
+End PolyOverSemiring.
+ +
+Section PolyOverRing.
+ +
+Context (S : pred_class) (ringS : @subringPred R S) (kS : keyed_pred ringS).
+Canonical polyOver_smulrPred := SmulrPred (polyOver_mulr_closed kS).
+Canonical polyOver_subringPred := SubringPred (polyOver_mulr_closed kS).
+ +
+Lemma polyOverXsubC c : ('X - c%:P \in polyOver kS) = (c \in kS).
+ +
+End PolyOverRing.
+ +
+
+ +
+ Single derivative. +
+
+ +
+Definition deriv p := \poly_(i < (size p).-1) (p`_i.+1 *+ i.+1).
+ +
+ +
+Lemma coef_deriv p i : p^``_i = p`_i.+1 *+ i.+1.
+ +
+Lemma polyOver_deriv S (ringS : semiringPred S) (kS : keyed_pred ringS) :
+  {in polyOver kS, p, p^` \is a polyOver kS}.
+ +
+Lemma derivC c : c%:P^` = 0.
+ +
+Lemma derivX : ('X)^` = 1.
+ +
+Lemma derivXn n : 'X^n^` = 'X^n.-1 *+ n.
+ +
+Fact deriv_is_linear : linear deriv.
+Canonical deriv_additive := Additive deriv_is_linear.
+Canonical deriv_linear := Linear deriv_is_linear.
+ +
+Lemma deriv0 : 0^` = 0.
+ +
+Lemma derivD : {morph deriv : p q / p + q}.
+ +
+Lemma derivN : {morph deriv : p / - p}.
+ +
+Lemma derivB : {morph deriv : p q / p - q}.
+ +
+Lemma derivXsubC (a : R) : ('X - a%:P)^` = 1.
+ +
+Lemma derivMn n p : (p *+ n)^` = p^` *+ n.
+ +
+Lemma derivMNn n p : (p *- n)^` = p^` *- n.
+ +
+Lemma derivZ c p : (c *: p)^` = c *: p^`.
+ +
+Lemma deriv_mulC c p : (c%:P × p)^` = c%:P × p^`.
+ +
+Lemma derivMXaddC p c : (p × 'X + c%:P)^` = p + p^` × 'X.
+ +
+Lemma derivM p q : (p × q)^` = p^` × q + p × q^`.
+ +
+Definition derivE := Eval lazy beta delta [morphism_2 morphism_1] in
+  (derivZ, deriv_mulC, derivC, derivX, derivMXaddC, derivXsubC, derivM, derivB,
+   derivD, derivN, derivXn, derivM, derivMn).
+ +
+
+ +
+ Iterated derivative. +
+
+Definition derivn n p := iter n deriv p.
+ +
+ +
+Lemma derivn0 p : p^`(0) = p.
+ +
+Lemma derivn1 p : p^`(1) = p^`.
+ +
+Lemma derivnS p n : p^`(n.+1) = p^`(n)^`.
+ +
+Lemma derivSn p n : p^`(n.+1) = p^`^`(n).
+ +
+Lemma coef_derivn n p i : p^`(n)`_i = p`_(n + i) *+ (n + i) ^_ n.
+ +
+Lemma polyOver_derivn S (ringS : semiringPred S) (kS : keyed_pred ringS) :
+  {in polyOver kS, p n, p^`(n) \is a polyOver kS}.
+ +
+Fact derivn_is_linear n : linear (derivn n).
+ Canonical derivn_additive n := Additive (derivn_is_linear n).
+Canonical derivn_linear n := Linear (derivn_is_linear n).
+ +
+Lemma derivnC c n : c%:P^`(n) = if n == 0%N then c%:P else 0.
+ +
+Lemma derivnD n : {morph derivn n : p q / p + q}.
+ +
+Lemma derivn_sub n : {morph derivn n : p q / p - q}.
+ +
+Lemma derivnMn n m p : (p *+ m)^`(n) = p^`(n) *+ m.
+ +
+Lemma derivnMNn n m p : (p *- m)^`(n) = p^`(n) *- m.
+ +
+Lemma derivnN n : {morph derivn n : p / - p}.
+ +
+Lemma derivnZ n : scalable (derivn n).
+ +
+Lemma derivnXn m n : 'X^m^`(n) = 'X^(m - n) *+ m ^_ n.
+ +
+Lemma derivnMXaddC n p c :
+  (p × 'X + c%:P)^`(n.+1) = p^`(n) *+ n.+1 + p^`(n.+1) × 'X.
+ +
+Lemma derivn_poly0 p n : size p n p^`(n) = 0.
+ +
+Lemma lt_size_deriv (p : {poly R}) : p != 0 size p^` < size p.
+ +
+
+ +
+ A normalising version of derivation to get the division by n! in Taylor +
+
+ +
+Definition nderivn n p := \poly_(i < size p - n) (p`_(n + i) *+ 'C(n + i, n)).
+ +
+ +
+Lemma coef_nderivn n p i : p^`N(n)`_i = p`_(n + i) *+ 'C(n + i, n).
+ +
+
+ +
+ Here is the division by n! +
+
+Lemma nderivn_def n p : p^`(n) = p^`N(n) *+ n`!.
+ +
+Lemma polyOver_nderivn S (ringS : semiringPred S) (kS : keyed_pred ringS) :
+  {in polyOver kS, p n, p^`N(n) \in polyOver kS}.
+ +
+Lemma nderivn0 p : p^`N(0) = p.
+ +
+Lemma nderivn1 p : p^`N(1) = p^`.
+ +
+Lemma nderivnC c n : (c%:P)^`N(n) = if n == 0%N then c%:P else 0.
+ +
+Lemma nderivnXn m n : 'X^m^`N(n) = 'X^(m - n) *+ 'C(m, n).
+ +
+Fact nderivn_is_linear n : linear (nderivn n).
+Canonical nderivn_additive n := Additive(nderivn_is_linear n).
+Canonical nderivn_linear n := Linear (nderivn_is_linear n).
+ +
+Lemma nderivnD n : {morph nderivn n : p q / p + q}.
+ +
+Lemma nderivnB n : {morph nderivn n : p q / p - q}.
+ +
+Lemma nderivnMn n m p : (p *+ m)^`N(n) = p^`N(n) *+ m.
+ +
+Lemma nderivnMNn n m p : (p *- m)^`N(n) = p^`N(n) *- m.
+ +
+Lemma nderivnN n : {morph nderivn n : p / - p}.
+ +
+Lemma nderivnZ n : scalable (nderivn n).
+ +
+Lemma nderivnMXaddC n p c :
+  (p × 'X + c%:P)^`N(n.+1) = p^`N(n) + p^`N(n.+1) × 'X.
+ +
+Lemma nderivn_poly0 p n : size p n p^`N(n) = 0.
+ +
+Lemma nderiv_taylor p x h :
+  GRing.comm x h p.[x + h] = \sum_(i < size p) p^`N(i).[x] × h ^+ i.
+ +
+Lemma nderiv_taylor_wide n p x h :
+    GRing.comm x h size p n
+  p.[x + h] = \sum_(i < n) p^`N(i).[x] × h ^+ i.
+ +
+End PolynomialTheory.
+ +
+Notation "\poly_ ( i < n ) E" := (poly n (fun iE)) : ring_scope.
+Notation "c %:P" := (polyC c) : ring_scope.
+Notation "'X" := (polyX _) : ring_scope.
+Notation "''X^' n" := ('X ^+ n) : ring_scope.
+Notation "p .[ x ]" := (horner p x) : ring_scope.
+Notation "n .-unity_root" := (root_of_unity n) : ring_scope.
+Notation "n .-primitive_root" := (primitive_root_of_unity n) : ring_scope.
+Notation "a ^` " := (deriv a) : ring_scope.
+Notation "a ^` ( n )" := (derivn n a) : ring_scope.
+Notation "a ^`N ( n )" := (nderivn n a) : ring_scope.
+ +
+ +
+
+ +
+ Container morphism. +
+
+Section MapPoly.
+ +
+Section Definitions.
+ +
+Variables (aR rR : ringType) (f : aR rR).
+ +
+Definition map_poly (p : {poly aR}) := \poly_(i < size p) f p`_i.
+ +
+
+ +
+ Alternative definition; the one above is more convenient because it lets + us use the lemmas on \poly, e.g., size (map_poly p) <= size p is an + instance of size_poly. +
+
+Lemma map_polyE p : map_poly p = Poly (map f p).
+ +
+Definition commr_rmorph u := x, GRing.comm u (f x).
+ +
+Definition horner_morph u of commr_rmorph u := fun p(map_poly p).[u].
+ +
+End Definitions.
+ +
+Variables aR rR : ringType.
+ +
+Section Combinatorial.
+ +
+Variables (iR : ringType) (f : aR rR).
+ +
+Lemma map_poly0 : 0^f = 0.
+ +
+Lemma eq_map_poly (g : aR rR) : f =1 g map_poly f =1 map_poly g.
+ +
+Lemma map_poly_id g (p : {poly iR}) :
+  {in (p : seq iR), g =1 id} map_poly g p = p.
+ +
+Lemma coef_map_id0 p i : f 0 = 0 (p^f)`_i = f p`_i.
+ +
+Lemma map_Poly_id0 s : f 0 = 0 (Poly s)^f = Poly (map f s).
+ +
+Lemma map_poly_comp_id0 (g : iR aR) p :
+  f 0 = 0 map_poly (f \o g) p = (map_poly g p)^f.
+ +
+Lemma size_map_poly_id0 p : f (lead_coef p) != 0 size p^f = size p.
+ +
+Lemma map_poly_eq0_id0 p : f (lead_coef p) != 0 (p^f == 0) = (p == 0).
+ +
+Lemma lead_coef_map_id0 p :
+  f 0 = 0 f (lead_coef p) != 0 lead_coef p^f = f (lead_coef p).
+ +
+Hypotheses (inj_f : injective f) (f_0 : f 0 = 0).
+ +
+Lemma size_map_inj_poly p : size p^f = size p.
+ +
+Lemma map_inj_poly : injective (map_poly f).
+ +
+Lemma lead_coef_map_inj p : lead_coef p^f = f (lead_coef p).
+ +
+End Combinatorial.
+ +
+Lemma map_polyK (f : aR rR) g :
+  cancel g f f 0 = 0 cancel (map_poly g) (map_poly f).
+ +
+Section Additive.
+ +
+Variables (iR : ringType) (f : {additive aR rR}).
+ +
+ +
+Lemma coef_map p i : p^f`_i = f p`_i.
+ +
+Lemma map_Poly s : (Poly s)^f = Poly (map f s).
+ +
+Lemma map_poly_comp (g : iR aR) p :
+  map_poly (f \o g) p = map_poly f (map_poly g p).
+ +
+Fact map_poly_is_additive : additive (map_poly f).
+ Canonical map_poly_additive := Additive map_poly_is_additive.
+ +
+Lemma map_polyC a : (a%:P)^f = (f a)%:P.
+ +
+Lemma lead_coef_map_eq p :
+  f (lead_coef p) != 0 lead_coef p^f = f (lead_coef p).
+ +
+End Additive.
+ +
+Variable f : {rmorphism aR rR}.
+Implicit Types p : {poly aR}.
+ +
+ +
+Fact map_poly_is_rmorphism : rmorphism (map_poly f).
+Canonical map_poly_rmorphism := RMorphism map_poly_is_rmorphism.
+ +
+Lemma map_polyZ c p : (c *: p)^f = f c *: p^f.
+ Canonical map_poly_linear :=
+  AddLinear (map_polyZ : scalable_for (f \; *:%R) (map_poly f)).
+Canonical map_poly_lrmorphism := [lrmorphism of map_poly f].
+ +
+Lemma map_polyX : ('X)^f = 'X.
+ +
+Lemma map_polyXn n : ('X^n)^f = 'X^n.
+ +
+Lemma monic_map p : p \is monic p^f \is monic.
+ +
+Lemma horner_map p x : p^f.[f x] = f p.[x].
+ +
+Lemma map_comm_poly p x : comm_poly p x comm_poly p^f (f x).
+ +
+Lemma map_comm_coef p x : comm_coef p x comm_coef p^f (f x).
+ +
+Lemma rmorph_root p x : root p x root p^f (f x).
+ +
+Lemma rmorph_unity_root n z : n.-unity_root z n.-unity_root (f z).
+ +
+Section HornerMorph.
+ +
+Variable u : rR.
+Hypothesis cfu : commr_rmorph f u.
+ +
+Lemma horner_morphC a : horner_morph cfu a%:P = f a.
+ +
+Lemma horner_morphX : horner_morph cfu 'X = u.
+ +
+Fact horner_is_lrmorphism : lrmorphism_for (f \; *%R) (horner_morph cfu).
+Canonical horner_additive := Additive horner_is_lrmorphism.
+Canonical horner_rmorphism := RMorphism horner_is_lrmorphism.
+Canonical horner_linear := AddLinear horner_is_lrmorphism.
+Canonical horner_lrmorphism := [lrmorphism of horner_morph cfu].
+ +
+End HornerMorph.
+ +
+Lemma deriv_map p : p^f^` = (p^`)^f.
+ +
+Lemma derivn_map p n : p^f^`(n) = (p^`(n))^f.
+ +
+Lemma nderivn_map p n : p^f^`N(n) = (p^`N(n))^f.
+ +
+End MapPoly.
+ +
+
+ +
+ Morphisms from the polynomial ring, and the initiality of polynomials + with respect to these. +
+
+Section MorphPoly.
+ +
+Variable (aR rR : ringType) (pf : {rmorphism {poly aR} rR}).
+ +
+Lemma poly_morphX_comm : commr_rmorph (pf \o polyC) (pf 'X).
+ +
+Lemma poly_initial : pf =1 horner_morph poly_morphX_comm.
+ +
+End MorphPoly.
+ +
+Notation "p ^:P" := (map_poly polyC p) : ring_scope.
+ +
+Section PolyCompose.
+ +
+Variable R : ringType.
+Implicit Types p q : {poly R}.
+ +
+Definition comp_poly q p := p^:P.[q].
+ +
+ +
+Lemma size_map_polyC p : size p^:P = size p.
+ +
+Lemma map_polyC_eq0 p : (p^:P == 0) = (p == 0).
+ +
+Lemma root_polyC p x : root p^:P x%:P = root p x.
+ +
+Lemma comp_polyE p q : p \Po q = \sum_(i < size p) p`_i *: q^+i.
+ +
+Lemma polyOver_comp S (ringS : semiringPred S) (kS : keyed_pred ringS) :
+  {in polyOver kS &, p q, p \Po q \in polyOver kS}.
+ +
+Lemma comp_polyCr p c : p \Po c%:P = p.[c]%:P.
+ +
+Lemma comp_poly0r p : p \Po 0 = (p`_0)%:P.
+ +
+Lemma comp_polyC c p : c%:P \Po p = c%:P.
+ +
+Fact comp_poly_is_linear p : linear (comp_poly p).
+Canonical comp_poly_additive p := Additive (comp_poly_is_linear p).
+Canonical comp_poly_linear p := Linear (comp_poly_is_linear p).
+ +
+Lemma comp_poly0 p : 0 \Po p = 0.
+ +
+Lemma comp_polyD p q r : (p + q) \Po r = (p \Po r) + (q \Po r).
+ +
+Lemma comp_polyB p q r : (p - q) \Po r = (p \Po r) - (q \Po r).
+ +
+Lemma comp_polyZ c p q : (c *: p) \Po q = c *: (p \Po q).
+ +
+Lemma comp_polyXr p : p \Po 'X = p.
+ +
+Lemma comp_polyX p : 'X \Po p = p.
+ +
+Lemma comp_poly_MXaddC c p q : (p × 'X + c%:P) \Po q = (p \Po q) × q + c%:P.
+ +
+Lemma comp_polyXaddC_K p z : (p \Po ('X + z%:P)) \Po ('X - z%:P) = p.
+ +
+Lemma size_comp_poly_leq p q :
+  size (p \Po q) ((size p).-1 × (size q).-1).+1.
+ +
+End PolyCompose.
+ +
+Notation "p \Po q" := (comp_poly q p) : ring_scope.
+ +
+Lemma map_comp_poly (aR rR : ringType) (f : {rmorphism aR rR}) p q :
+  map_poly f (p \Po q) = map_poly f p \Po map_poly f q.
+ +
+Section PolynomialComRing.
+ +
+Variable R : comRingType.
+Implicit Types p q : {poly R}.
+ +
+Fact poly_mul_comm p q : p × q = q × p.
+ +
+Canonical poly_comRingType := Eval hnf in ComRingType {poly R} poly_mul_comm.
+Canonical polynomial_comRingType :=
+  Eval hnf in ComRingType (polynomial R) poly_mul_comm.
+Canonical poly_algType := Eval hnf in CommAlgType R {poly R}.
+Canonical polynomial_algType :=
+  Eval hnf in [algType R of polynomial R for poly_algType].
+ +
+Lemma hornerM p q x : (p × q).[x] = p.[x] × q.[x].
+ +
+Lemma horner_exp p x n : (p ^+ n).[x] = p.[x] ^+ n.
+ +
+Lemma horner_prod I r (P : pred I) (F : I {poly R}) x :
+  (\prod_(i <- r | P i) F i).[x] = \prod_(i <- r | P i) (F i).[x].
+ +
+Definition hornerE :=
+  (hornerD, hornerN, hornerX, hornerC, horner_cons,
+   simp, hornerCM, hornerZ, hornerM).
+ +
+Definition horner_eval (x : R) := horner^~ x.
+Lemma horner_evalE x p : horner_eval x p = p.[x].
+ +
+Fact horner_eval_is_lrmorphism x : lrmorphism_for *%R (horner_eval x).
+Canonical horner_eval_additive x := Additive (horner_eval_is_lrmorphism x).
+Canonical horner_eval_rmorphism x := RMorphism (horner_eval_is_lrmorphism x).
+Canonical horner_eval_linear x := AddLinear (horner_eval_is_lrmorphism x).
+Canonical horner_eval_lrmorphism x := [lrmorphism of horner_eval x].
+ +
+Fact comp_poly_multiplicative q : multiplicative (comp_poly q).
+Canonical comp_poly_rmorphism q := AddRMorphism (comp_poly_multiplicative q).
+Canonical comp_poly_lrmorphism q := [lrmorphism of comp_poly q].
+ +
+Lemma comp_polyM p q r : (p × q) \Po r = (p \Po r) × (q \Po r).
+ +
+Lemma comp_polyA p q r : p \Po (q \Po r) = (p \Po q) \Po r.
+ +
+Lemma horner_comp p q x : (p \Po q).[x] = p.[q.[x]].
+ +
+Lemma root_comp p q x : root (p \Po q) x = root p (q.[x]).
+ +
+Lemma deriv_comp p q : (p \Po q) ^` = (p ^` \Po q) × q^`.
+ +
+Lemma deriv_exp p n : (p ^+ n)^` = p^` × p ^+ n.-1 *+ n.
+ +
+Definition derivCE := (derivE, deriv_exp).
+ +
+End PolynomialComRing.
+ +
+Section PolynomialIdomain.
+ +
+
+ +
+ Integral domain structure on poly +
+
+Variable R : idomainType.
+ +
+Implicit Types (a b x y : R) (p q r m : {poly R}).
+ +
+Lemma size_mul p q : p != 0 q != 0 size (p × q) = (size p + size q).-1.
+ +
+Fact poly_idomainAxiom p q : p × q = 0 (p == 0) || (q == 0).
+ +
+Definition poly_unit : pred {poly R} :=
+  fun p(size p == 1%N) && (p`_0 \in GRing.unit).
+ +
+Definition poly_inv p := if p \in poly_unit then (p`_0)^-1%:P else p.
+ +
+Fact poly_mulVp : {in poly_unit, left_inverse 1 poly_inv *%R}.
+ +
+Fact poly_intro_unit p q : q × p = 1 p \in poly_unit.
+ +
+Fact poly_inv_out : {in [predC poly_unit], poly_inv =1 id}.
+ +
+Definition poly_comUnitMixin :=
+  ComUnitRingMixin poly_mulVp poly_intro_unit poly_inv_out.
+ +
+Canonical poly_unitRingType :=
+  Eval hnf in UnitRingType {poly R} poly_comUnitMixin.
+Canonical polynomial_unitRingType :=
+  Eval hnf in [unitRingType of polynomial R for poly_unitRingType].
+ +
+Canonical poly_unitAlgType := Eval hnf in [unitAlgType R of {poly R}].
+Canonical polynomial_unitAlgType := Eval hnf in [unitAlgType R of polynomial R].
+ +
+Canonical poly_comUnitRingType := Eval hnf in [comUnitRingType of {poly R}].
+Canonical polynomial_comUnitRingType :=
+  Eval hnf in [comUnitRingType of polynomial R].
+ +
+Canonical poly_idomainType :=
+  Eval hnf in IdomainType {poly R} poly_idomainAxiom.
+Canonical polynomial_idomainType :=
+  Eval hnf in [idomainType of polynomial R for poly_idomainType].
+ +
+Lemma poly_unitE p :
+  (p \in GRing.unit) = (size p == 1%N) && (p`_0 \in GRing.unit).
+ +
+Lemma poly_invE p : p ^-1 = if p \in GRing.unit then (p`_0)^-1%:P else p.
+ +
+Lemma polyC_inv c : c%:P^-1 = (c^-1)%:P.
+ +
+Lemma rootM p q x : root (p × q) x = root p x || root q x.
+ +
+Lemma rootZ x a p : a != 0 root (a *: p) x = root p x.
+ +
+Lemma size_scale a p : a != 0 size (a *: p) = size p.
+ +
+Lemma size_Cmul a p : a != 0 size (a%:P × p) = size p.
+ +
+Lemma lead_coefM p q : lead_coef (p × q) = lead_coef p × lead_coef q.
+ +
+Lemma lead_coefZ a p : lead_coef (a *: p) = a × lead_coef p.
+ +
+Lemma scale_poly_eq0 a p : (a *: p == 0) = (a == 0) || (p == 0).
+ +
+Lemma size_prod (I : finType) (P : pred I) (F : I {poly R}) :
+    ( i, P i F i != 0)
+  size (\prod_(i | P i) F i) = ((\sum_(i | P i) size (F i)).+1 - #|P|)%N.
+ +
+Lemma size_exp p n : (size (p ^+ n)).-1 = ((size p).-1 × n)%N.
+ +
+Lemma lead_coef_exp p n : lead_coef (p ^+ n) = lead_coef p ^+ n.
+ +
+Lemma root_prod_XsubC rs x :
+  root (\prod_(a <- rs) ('X - a%:P)) x = (x \in rs).
+ +
+Lemma root_exp_XsubC n a x : root (('X - a%:P) ^+ n.+1) x = (x == a).
+ +
+Lemma size_comp_poly p q :
+  (size (p \Po q)).-1 = ((size p).-1 × (size q).-1)%N.
+ +
+Lemma size_comp_poly2 p q : size q = 2 size (p \Po q) = size p.
+ +
+Lemma comp_poly2_eq0 p q : size q = 2 (p \Po q == 0) = (p == 0).
+ +
+Lemma lead_coef_comp p q :
+  size q > 1 lead_coef (p \Po q) = lead_coef p × lead_coef q ^+ (size p).-1.
+ +
+Theorem max_poly_roots p rs :
+  p != 0 all (root p) rs uniq rs size rs < size p.
+ +
+End PolynomialIdomain.
+ +
+Section MapFieldPoly.
+ +
+Variables (F : fieldType) (R : ringType) (f : {rmorphism F R}).
+ +
+ +
+Lemma size_map_poly p : size p^f = size p.
+ +
+Lemma lead_coef_map p : lead_coef p^f = f (lead_coef p).
+ +
+Lemma map_poly_eq0 p : (p^f == 0) = (p == 0).
+ +
+Lemma map_poly_inj : injective (map_poly f).
+ +
+Lemma map_monic p : (p^f \is monic) = (p \is monic).
+ +
+Lemma map_poly_com p x : comm_poly p^f (f x).
+ +
+Lemma fmorph_root p x : root p^f (f x) = root p x.
+ +
+Lemma fmorph_unity_root n z : n.-unity_root (f z) = n.-unity_root z.
+ +
+Lemma fmorph_primitive_root n z :
+  n.-primitive_root (f z) = n.-primitive_root z.
+ +
+End MapFieldPoly.
+ +
+ +
+Section MaxRoots.
+ +
+Variable R : unitRingType.
+Implicit Types (x y : R) (rs : seq R) (p : {poly R}).
+ +
+Definition diff_roots (x y : R) := (x × y == y × x) && (y - x \in GRing.unit).
+ +
+Fixpoint uniq_roots rs :=
+  if rs is x :: rs' then all (diff_roots x) rs' && uniq_roots rs' else true.
+ +
+Lemma uniq_roots_prod_XsubC p rs :
+    all (root p) rs uniq_roots rs
+   q, p = q × \prod_(z <- rs) ('X - z%:P).
+ +
+Theorem max_ring_poly_roots p rs :
+  p != 0 all (root p) rs uniq_roots rs size rs < size p.
+ +
+Lemma all_roots_prod_XsubC p rs :
+    size p = (size rs).+1 all (root p) rs uniq_roots rs
+  p = lead_coef p *: \prod_(z <- rs) ('X - z%:P).
+ +
+End MaxRoots.
+ +
+Section FieldRoots.
+ +
+Variable F : fieldType.
+Implicit Types (p : {poly F}) (rs : seq F).
+ +
+Lemma poly2_root p : size p = 2 {r | root p r}.
+ +
+Lemma uniq_rootsE rs : uniq_roots rs = uniq rs.
+ +
+Section UnityRoots.
+ +
+Variable n : nat.
+ +
+Lemma max_unity_roots rs :
+  n > 0 all n.-unity_root rs uniq rs size rs n.
+ +
+Lemma mem_unity_roots rs :
+    n > 0 all n.-unity_root rs uniq rs size rs = n
+  n.-unity_root =i rs.
+ +
+
+ +
+ Showing the existence of a primitive root requires the theory in cyclic. +
+
+ +
+Variable z : F.
+Hypothesis prim_z : n.-primitive_root z.
+ +
+Let zn := [seq z ^+ i | i <- index_iota 0 n].
+ +
+Lemma factor_Xn_sub_1 : \prod_(0 i < n) ('X - (z ^+ i)%:P) = 'X^n - 1.
+ +
+Lemma prim_rootP x : x ^+ n = 1 {i : 'I_n | x = z ^+ i}.
+ +
+End UnityRoots.
+ +
+End FieldRoots.
+ +
+Section MapPolyRoots.
+ +
+Variables (F : fieldType) (R : unitRingType) (f : {rmorphism F R}).
+ +
+Lemma map_diff_roots x y : diff_roots (f x) (f y) = (x != y).
+ +
+Lemma map_uniq_roots s : uniq_roots (map f s) = uniq s.
+ +
+End MapPolyRoots.
+ +
+Section AutPolyRoot.
+
+ +
+ The action of automorphisms on roots of unity. +
+
+ +
+Variable F : fieldType.
+Implicit Types u v : {rmorphism F F}.
+ +
+Lemma aut_prim_rootP u z n :
+  n.-primitive_root z {k | coprime k n & u z = z ^+ k}.
+ +
+Lemma aut_unity_rootP u z n : n > 0 z ^+ n = 1 {k | u z = z ^+ k}.
+ +
+Lemma aut_unity_rootC u v z n : n > 0 z ^+ n = 1 u (v z) = v (u z).
+ +
+End AutPolyRoot.
+ +
+Module UnityRootTheory.
+ +
+Notation "n .-unity_root" := (root_of_unity n) : unity_root_scope.
+Notation "n .-primitive_root" := (primitive_root_of_unity n) : unity_root_scope.
+Open Scope unity_root_scope.
+ +
+Definition unity_rootE := unity_rootE.
+Definition unity_rootP := @unity_rootP.
+ +
+Definition prim_order_exists := prim_order_exists.
+Notation prim_order_gt0 := prim_order_gt0.
+Notation prim_expr_order := prim_expr_order.
+Definition prim_expr_mod := prim_expr_mod.
+Definition prim_order_dvd := prim_order_dvd.
+Definition eq_prim_root_expr := eq_prim_root_expr.
+ +
+Definition rmorph_unity_root := rmorph_unity_root.
+Definition fmorph_unity_root := fmorph_unity_root.
+Definition fmorph_primitive_root := fmorph_primitive_root.
+Definition max_unity_roots := max_unity_roots.
+Definition mem_unity_roots := mem_unity_roots.
+Definition prim_rootP := prim_rootP.
+ +
+End UnityRootTheory.
+ +
+Section DecField.
+ +
+Variable F : decFieldType.
+ +
+Lemma dec_factor_theorem (p : {poly F}) :
+  {s : seq F & {q : {poly F} | p = q × \prod_(x <- s) ('X - x%:P)
+                              (q != 0 x, ~~ root q x)}}.
+ +
+End DecField.
+ +
+Module PreClosedField.
+Section UseAxiom.
+ +
+Variable F : fieldType.
+Hypothesis closedF : GRing.ClosedField.axiom F.
+Implicit Type p : {poly F}.
+ +
+Lemma closed_rootP p : reflect ( x, root p x) (size p != 1%N).
+ +
+Lemma closed_nonrootP p : reflect ( x, ~~ root p x) (p != 0).
+ +
+End UseAxiom.
+End PreClosedField.
+ +
+Section ClosedField.
+ +
+Variable F : closedFieldType.
+Implicit Type p : {poly F}.
+ +
+Let closedF := @solve_monicpoly F.
+ +
+Lemma closed_rootP p : reflect ( x, root p x) (size p != 1%N).
+ +
+Lemma closed_nonrootP p : reflect ( x, ~~ root p x) (p != 0).
+ +
+Lemma closed_field_poly_normal p :
+  {r : seq F | p = lead_coef p *: \prod_(z <- r) ('X - z%:P)}.
+ +
+End ClosedField.
+
+
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3