From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Wed, 22 May 2019 13:43:08 +0200 Subject: htmldoc regenerated --- docs/htmldoc/mathcomp.algebra.poly.html | 1189 ++++++++++++++++--------------- 1 file changed, 633 insertions(+), 556 deletions(-) (limited to 'docs/htmldoc/mathcomp.algebra.poly.html') diff --git a/docs/htmldoc/mathcomp.algebra.poly.html b/docs/htmldoc/mathcomp.algebra.poly.html index f28edfc..d10d9bb 100644 --- a/docs/htmldoc/mathcomp.algebra.poly.html +++ b/docs/htmldoc/mathcomp.algebra.poly.html @@ -21,7 +21,6 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
 Distributed under the terms of CeCILL-B.                                  *)

-Require Import mathcomp.ssreflect.ssreflect.

@@ -159,25 +158,25 @@ Defines a polynomial as a sequence with <> 0 last element
-Record polynomial := Polynomial {polyseq :> seq R; _ : last 1 polyseq != 0}.
+Record polynomial := Polynomial {polyseq :> seq R; _ : last 1 polyseq != 0}.

-Canonical polynomial_subType := Eval hnf in [subType for polyseq].
-Definition polynomial_eqMixin := Eval hnf in [eqMixin of polynomial by <:].
+Canonical polynomial_subType := Eval hnf in [subType for polyseq].
+Definition polynomial_eqMixin := Eval hnf in [eqMixin of polynomial by <:].
Canonical polynomial_eqType := Eval hnf in EqType polynomial polynomial_eqMixin.
-Definition polynomial_choiceMixin := [choiceMixin of polynomial by <:].
+Definition polynomial_choiceMixin := [choiceMixin of polynomial by <:].
Canonical polynomial_choiceType :=
  Eval hnf in ChoiceType polynomial polynomial_choiceMixin.

-Lemma poly_inj : injective polyseq.
+Lemma poly_inj : injective polyseq.

-Definition poly_of of phant R := polynomial.
+Definition poly_of of phant R := polynomial.
Identity Coercion type_poly_of : poly_of >-> polynomial.

-Definition coefp_head h i (p : poly_of (Phant R)) := let: tt := h in p`_i.
+Definition coefp_head h i (p : poly_of (Phant R)) := let: tt := h in p`_i.

End Polynomial.
@@ -186,32 +185,38 @@
- We need to break off the section here to let the argument scope - directives take effect. + We need to break off the section here to let the Bind Scope directives + take effect.
-Notation "{ 'poly' T }" := (poly_of (Phant T)).
-Notation coefp i := (coefp_head tt i).
+Notation "{ 'poly' T }" := (poly_of (Phant T)).
+Notation coefp i := (coefp_head tt i).
+ +
+Definition poly_countMixin (R : countRingType) :=
+  [countMixin of polynomial R by <:].
+Canonical polynomial_countType R := CountType _ (poly_countMixin R).
+Canonical poly_countType (R : countRingType) := [countType of {poly R}].

Section PolynomialTheory.

Variable R : ringType.
-Implicit Types (a b c x y z : R) (p q r d : {poly R}).
+Implicit Types (a b c x y z : R) (p q r d : {poly R}).

-Canonical poly_subType := Eval hnf in [subType of {poly R}].
-Canonical poly_eqType := Eval hnf in [eqType of {poly R}].
-Canonical poly_choiceType := Eval hnf in [choiceType of {poly R}].
+Canonical poly_subType := Eval hnf in [subType of {poly R}].
+Canonical poly_eqType := Eval hnf in [eqType of {poly R}].
+Canonical poly_choiceType := Eval hnf in [choiceType of {poly R}].

-Definition lead_coef p := p`_(size p).-1.
-Lemma lead_coefE p : lead_coef p = p`_(size p).-1.
+Definition lead_coef p := p`_(size p).-1.
+Lemma lead_coefE p : lead_coef p = p`_(size p).-1.

-Definition poly_nil := @Polynomial R [::] (oner_neq0 R).
-Definition polyC c : {poly R} := insubd poly_nil [:: c].
+Definition poly_nil := @Polynomial R [::] (oner_neq0 R).
+Definition polyC c : {poly R} := insubd poly_nil [:: c].

@@ -222,22 +227,22 @@ Remember the boolean (c != 0) is coerced to 1 if true and 0 if false
-Lemma polyseqC c : c%:P = nseq (c != 0) c :> seq R.
+Lemma polyseqC c : c%:P = nseq (c != 0) c :> seq R.

-Lemma size_polyC c : size c%:P = (c != 0).
+Lemma size_polyC c : size c%:P = (c != 0).

-Lemma coefC c i : c%:P`_i = if i == 0%N then c else 0.
+Lemma coefC c i : c%:P`_i = if i == 0%N then c else 0.

-Lemma polyCK : cancel polyC (coefp 0).
+Lemma polyCK : cancel polyC (coefp 0).

-Lemma polyC_inj : injective polyC.
+Lemma polyC_inj : injective polyC.

-Lemma lead_coefC c : lead_coef c%:P = c.
+Lemma lead_coefC c : lead_coef c%:P = c.

@@ -246,10 +251,10 @@ Extensional interpretation (poly <=> nat -> R)
-Lemma polyP p q : nth 0 p =1 nth 0 q p = q.
+Lemma polyP p q : nth 0 p =1 nth 0 q p = q.

-Lemma size1_polyC p : size p 1 p = (p`_0)%:P.
+Lemma size1_polyC p : size p 1 p = (p`_0)%:P.

@@ -258,21 +263,21 @@ Builds a polynomial by extension.
-Definition cons_poly c p : {poly R} :=
-  if p is Polynomial ((_ :: _) as s) ns then
-    @Polynomial R (c :: s) ns
-  else c%:P.
+Definition cons_poly c p : {poly R} :=
+  if p is Polynomial ((_ :: _) as s) ns then
+    @Polynomial R (c :: s) ns
+  else c%:P.

Lemma polyseq_cons c p :
-  cons_poly c p = (if ~~ nilp p then c :: p else c%:P) :> seq R.
+  cons_poly c p = (if ~~ nilp p then c :: p else c%:P) :> seq R.

Lemma size_cons_poly c p :
-  size (cons_poly c p) = (if nilp p && (c == 0) then 0%N else (size p).+1).
+  size (cons_poly c p) = (if nilp p && (c == 0) then 0%N else (size p).+1).

-Lemma coef_cons c p i : (cons_poly c p)`_i = if i == 0%N then c else p`_i.-1.
+Lemma coef_cons c p i : (cons_poly c p)`_i = if i == 0%N then c else p`_i.-1.

@@ -281,19 +286,19 @@ Build a polynomial directly from a list of coefficients.
-Definition Poly := foldr cons_poly 0%:P.
+Definition Poly := foldr cons_poly 0%:P.

-Lemma PolyK c s : last c s != 0 Poly s = s :> seq R.
+Lemma PolyK c s : last c s != 0 Poly s = s :> seq R.

-Lemma polyseqK p : Poly p = p.
+Lemma polyseqK p : Poly p = p.

-Lemma size_Poly s : size (Poly s) size s.
+Lemma size_Poly s : size (Poly s) size s.

-Lemma coef_Poly s i : (Poly s)`_i = s`_i.
+Lemma coef_Poly s i : (Poly s)`_i = s`_i.

@@ -303,29 +308,29 @@
Definition poly_expanded_def n E := Poly (mkseq E n).
-Fact poly_key : unit.
-Definition poly := locked_with poly_key poly_expanded_def.
-Canonical poly_unlockable := [unlockable fun poly].
+Fact poly_key : unit.
+Definition poly := locked_with poly_key poly_expanded_def.
+Canonical poly_unlockable := [unlockable fun poly].

Lemma polyseq_poly n E :
-  E n.-1 != 0 \poly_(i < n) E i = mkseq [eta E] n :> seq R.
+  E n.-1 != 0 \poly_(i < n) E i = mkseq [eta E] n :> seq R.

-Lemma size_poly n E : size (\poly_(i < n) E i) n.
+Lemma size_poly n E : size (\poly_(i < n) E i) n.

-Lemma size_poly_eq n E : E n.-1 != 0 size (\poly_(i < n) E i) = n.
+Lemma size_poly_eq n E : E n.-1 != 0 size (\poly_(i < n) E i) = n.

-Lemma coef_poly n E k : (\poly_(i < n) E i)`_k = (if k < n then E k else 0).
+Lemma coef_poly n E k : (\poly_(i < n) E i)`_k = (if k < n then E k else 0).

Lemma lead_coef_poly n E :
-  n > 0 E n.-1 != 0 lead_coef (\poly_(i < n) E i) = E n.-1.
+  n > 0 E n.-1 != 0 lead_coef (\poly_(i < n) E i) = E n.-1.

-Lemma coefK p : \poly_(i < size p) p`_i = p.
+Lemma coefK p : \poly_(i < size p) p`_i = p.

@@ -334,41 +339,41 @@ Zmodule structure for polynomial
-Definition add_poly_def p q := \poly_(i < maxn (size p) (size q)) (p`_i + q`_i).
-Fact add_poly_key : unit.
-Definition add_poly := locked_with add_poly_key add_poly_def.
-Canonical add_poly_unlockable := [unlockable fun add_poly].
+Definition add_poly_def p q := \poly_(i < maxn (size p) (size q)) (p`_i + q`_i).
+Fact add_poly_key : unit.
+Definition add_poly := locked_with add_poly_key add_poly_def.
+Canonical add_poly_unlockable := [unlockable fun add_poly].

-Definition opp_poly_def p := \poly_(i < size p) - p`_i.
-Fact opp_poly_key : unit.
-Definition opp_poly := locked_with opp_poly_key opp_poly_def.
-Canonical opp_poly_unlockable := [unlockable fun opp_poly].
+Definition opp_poly_def p := \poly_(i < size p) - p`_i.
+Fact opp_poly_key : unit.
+Definition opp_poly := locked_with opp_poly_key opp_poly_def.
+Canonical opp_poly_unlockable := [unlockable fun opp_poly].

-Fact coef_add_poly p q i : (add_poly p q)`_i = p`_i + q`_i.
+Fact coef_add_poly p q i : (add_poly p q)`_i = p`_i + q`_i.

-Fact coef_opp_poly p i : (opp_poly p)`_i = - p`_i.
+Fact coef_opp_poly p i : (opp_poly p)`_i = - p`_i.

-Fact add_polyA : associative add_poly.
+Fact add_polyA : associative add_poly.

-Fact add_polyC : commutative add_poly.
+Fact add_polyC : commutative add_poly.

-Fact add_poly0 : left_id 0%:P add_poly.
+Fact add_poly0 : left_id 0%:P add_poly.

-Fact add_polyN : left_inverse 0%:P opp_poly add_poly.
+Fact add_polyN : left_inverse 0%:P opp_poly add_poly.

Definition poly_zmodMixin :=
  ZmodMixin add_polyA add_polyC add_poly0 add_polyN.

-Canonical poly_zmodType := Eval hnf in ZmodType {poly R} poly_zmodMixin.
+Canonical poly_zmodType := Eval hnf in ZmodType {poly R} poly_zmodMixin.
Canonical polynomial_zmodType :=
  Eval hnf in ZmodType (polynomial R) poly_zmodMixin.
@@ -379,52 +384,58 @@ Properties of the zero polynomial
-Lemma polyC0 : 0%:P = 0 :> {poly R}.
+Lemma polyC0 : 0%:P = 0 :> {poly R}.

-Lemma polyseq0 : (0 : {poly R}) = [::] :> seq R.
+Lemma polyseq0 : (0 : {poly R}) = [::] :> seq R.

-Lemma size_poly0 : size (0 : {poly R}) = 0%N.
+Lemma size_poly0 : size (0 : {poly R}) = 0%N.

-Lemma coef0 i : (0 : {poly R})`_i = 0.
+Lemma coef0 i : (0 : {poly R})`_i = 0.

-Lemma lead_coef0 : lead_coef 0 = 0 :> R.
+Lemma lead_coef0 : lead_coef 0 = 0 :> R.

-Lemma size_poly_eq0 p : (size p == 0%N) = (p == 0).
+Lemma size_poly_eq0 p : (size p == 0%N) = (p == 0).

-Lemma size_poly_leq0 p : (size p 0) = (p == 0).
+Lemma size_poly_leq0 p : (size p 0) = (p == 0).

-Lemma size_poly_leq0P p : reflect (p = 0) (size p 0%N).
+Lemma size_poly_leq0P p : reflect (p = 0) (size p 0%N).

-Lemma size_poly_gt0 p : (0 < size p) = (p != 0).
+Lemma size_poly_gt0 p : (0 < size p) = (p != 0).

-Lemma nil_poly p : nilp p = (p == 0).
+Lemma gt_size_poly_neq0 p n : (size p > n)%N p != 0.

-Lemma poly0Vpos p : {p = 0} + {size p > 0}.
+Lemma nil_poly p : nilp p = (p == 0).

-Lemma polySpred p : p != 0 size p = (size p).-1.+1.
+Lemma poly0Vpos p : {p = 0} + {size p > 0}.

-Lemma lead_coef_eq0 p : (lead_coef p == 0) = (p == 0).
+Lemma polySpred p : p != 0 size p = (size p).-1.+1.
+ +
+Lemma lead_coef_eq0 p : (lead_coef p == 0) = (p == 0).

-Lemma polyC_eq0 (c : R) : (c%:P == 0) = (c == 0).
+Lemma polyC_eq0 (c : R) : (c%:P == 0) = (c == 0).

-Lemma size_poly1P p : reflect (exists2 c, c != 0 & p = c%:P) (size p == 1%N).
+Lemma size_poly1P p : reflect (exists2 c, c != 0 & p = c%:P) (size p == 1%N).

-Lemma leq_sizeP p i : reflect ( j, i j p`_j = 0) (size p i).
+Lemma size_polyC_leq1 (c : R) : (size c%:P 1)%N.
+ +
+Lemma leq_sizeP p i : reflect ( j, i j p`_j = 0) (size p i).

@@ -435,62 +446,65 @@

-Lemma coefD p q i : (p + q)`_i = p`_i + q`_i.
+Lemma coefD p q i : (p + q)`_i = p`_i + q`_i.

-Lemma coefN p i : (- p)`_i = - p`_i.
+Lemma coefN p i : (- p)`_i = - p`_i.

-Lemma coefB p q i : (p - q)`_i = p`_i - q`_i.
+Lemma coefB p q i : (p - q)`_i = p`_i - q`_i.

Canonical coefp_additive i :=
-  Additive ((fun p(coefB p)^~ i) : additive (coefp i)).
+  Additive ((fun p(coefB p)^~ i) : additive (coefp i)).

-Lemma coefMn p n i : (p *+ n)`_i = p`_i *+ n.
+Lemma coefMn p n i : (p *+ n)`_i = p`_i *+ n.

-Lemma coefMNn p n i : (p *- n)`_i = p`_i *- n.
+Lemma coefMNn p n i : (p *- n)`_i = p`_i *- n.

-Lemma coef_sum I (r : seq I) (P : pred I) (F : I {poly R}) k :
-  (\sum_(i <- r | P i) F i)`_k = \sum_(i <- r | P i) (F i)`_k.
+Lemma coef_sum I (r : seq I) (P : pred I) (F : I {poly R}) k :
+  (\sum_(i <- r | P i) F i)`_k = \sum_(i <- r | P i) (F i)`_k.

-Lemma polyC_add : {morph polyC : a b / a + b}.
+Lemma polyC_add : {morph polyC : a b / a + b}.

-Lemma polyC_opp : {morph polyC : c / - c}.
+Lemma polyC_opp : {morph polyC : c / - c}.

-Lemma polyC_sub : {morph polyC : a b / a - b}.
+Lemma polyC_sub : {morph polyC : a b / a - b}.

Canonical polyC_additive := Additive polyC_sub.

-Lemma polyC_muln n : {morph polyC : c / c *+ n}.
+Lemma polyC_muln n : {morph polyC : c / c *+ n}.

-Lemma size_opp p : size (- p) = size p.
+Lemma size_opp p : size (- p) = size p.

-Lemma lead_coef_opp p : lead_coef (- p) = - lead_coef p.
+Lemma lead_coef_opp p : lead_coef (- p) = - lead_coef p.

-Lemma size_add p q : size (p + q) maxn (size p) (size q).
+Lemma size_add p q : size (p + q) maxn (size p) (size q).

-Lemma size_addl p q : size p > size q size (p + q) = size p.
+Lemma size_addl p q : size p > size q size (p + q) = size p.

-Lemma size_sum I (r : seq I) (P : pred I) (F : I {poly R}) :
-  size (\sum_(i <- r | P i) F i) \max_(i <- r | P i) size (F i).
+Lemma size_sum I (r : seq I) (P : pred I) (F : I {poly R}) :
+  size (\sum_(i <- r | P i) F i) \max_(i <- r | P i) size (F i).

-Lemma lead_coefDl p q : size p > size q lead_coef (p + q) = lead_coef p.
+Lemma lead_coefDl p q : size p > size q lead_coef (p + q) = lead_coef p.
+
+Lemma lead_coefDr p q : size q > size p lead_coef (p + q) = lead_coef q.
+
@@ -501,110 +515,110 @@
Definition mul_poly_def p q :=
-  \poly_(i < (size p + size q).-1) (\sum_(j < i.+1) p`_j × q`_(i - j)).
-Fact mul_poly_key : unit.
-Definition mul_poly := locked_with mul_poly_key mul_poly_def.
-Canonical mul_poly_unlockable := [unlockable fun mul_poly].
+  \poly_(i < (size p + size q).-1) (\sum_(j < i.+1) p`_j × q`_(i - j)).
+Fact mul_poly_key : unit.
+Definition mul_poly := locked_with mul_poly_key mul_poly_def.
+Canonical mul_poly_unlockable := [unlockable fun mul_poly].

Fact coef_mul_poly p q i :
-  (mul_poly p q)`_i = \sum_(j < i.+1) p`_j × q`_(i - j)%N.
+  (mul_poly p q)`_i = \sum_(j < i.+1) p`_j × q`_(i - j)%N.

Fact coef_mul_poly_rev p q i :
-  (mul_poly p q)`_i = \sum_(j < i.+1) p`_(i - j)%N × q`_j.
+  (mul_poly p q)`_i = \sum_(j < i.+1) p`_(i - j)%N × q`_j.

-Fact mul_polyA : associative mul_poly.
+Fact mul_polyA : associative mul_poly.

-Fact mul_1poly : left_id 1%:P mul_poly.
+Fact mul_1poly : left_id 1%:P mul_poly.

-Fact mul_poly1 : right_id 1%:P mul_poly.
+Fact mul_poly1 : right_id 1%:P mul_poly.

-Fact mul_polyDl : left_distributive mul_poly +%R.
+Fact mul_polyDl : left_distributive mul_poly +%R.

-Fact mul_polyDr : right_distributive mul_poly +%R.
+Fact mul_polyDr : right_distributive mul_poly +%R.

-Fact poly1_neq0 : 1%:P != 0 :> {poly R}.
+Fact poly1_neq0 : 1%:P != 0 :> {poly R}.

Definition poly_ringMixin :=
  RingMixin mul_polyA mul_1poly mul_poly1 mul_polyDl mul_polyDr poly1_neq0.

-Canonical poly_ringType := Eval hnf in RingType {poly R} poly_ringMixin.
+Canonical poly_ringType := Eval hnf in RingType {poly R} poly_ringMixin.
Canonical polynomial_ringType :=
  Eval hnf in RingType (polynomial R) poly_ringMixin.

-Lemma polyC1 : 1%:P = 1 :> {poly R}.
+Lemma polyC1 : 1%:P = 1 :> {poly R}.

-Lemma polyseq1 : (1 : {poly R}) = [:: 1] :> seq R.
+Lemma polyseq1 : (1 : {poly R}) = [:: 1] :> seq R.

-Lemma size_poly1 : size (1 : {poly R}) = 1%N.
+Lemma size_poly1 : size (1 : {poly R}) = 1%N.

-Lemma coef1 i : (1 : {poly R})`_i = (i == 0%N)%:R.
+Lemma coef1 i : (1 : {poly R})`_i = (i == 0%N)%:R.

-Lemma lead_coef1 : lead_coef 1 = 1 :> R.
+Lemma lead_coef1 : lead_coef 1 = 1 :> R.

-Lemma coefM p q i : (p × q)`_i = \sum_(j < i.+1) p`_j × q`_(i - j)%N.
+Lemma coefM p q i : (p × q)`_i = \sum_(j < i.+1) p`_j × q`_(i - j)%N.

-Lemma coefMr p q i : (p × q)`_i = \sum_(j < i.+1) p`_(i - j)%N × q`_j.
+Lemma coefMr p q i : (p × q)`_i = \sum_(j < i.+1) p`_(i - j)%N × q`_j.

-Lemma size_mul_leq p q : size (p × q) (size p + size q).-1.
+Lemma size_mul_leq p q : size (p × q) (size p + size q).-1.

Lemma mul_lead_coef p q :
-  lead_coef p × lead_coef q = (p × q)`_(size p + size q).-2.
+  lead_coef p × lead_coef q = (p × q)`_(size p + size q).-2.

Lemma size_proper_mul p q :
-  lead_coef p × lead_coef q != 0 size (p × q) = (size p + size q).-1.
+  lead_coef p × lead_coef q != 0 size (p × q) = (size p + size q).-1.

Lemma lead_coef_proper_mul p q :
-  let c := lead_coef p × lead_coef q in c != 0 lead_coef (p × q) = c.
+  let c := lead_coef p × lead_coef q in c != 0 lead_coef (p × q) = c.

-Lemma size_prod_leq (I : finType) (P : pred I) (F : I {poly R}) :
-  size (\prod_(i | P i) F i) (\sum_(i | P i) size (F i)).+1 - #|P|.
+Lemma size_prod_leq (I : finType) (P : pred I) (F : I {poly R}) :
+  size (\prod_(i | P i) F i) (\sum_(i | P i) size (F i)).+1 - #|P|.

-Lemma coefCM c p i : (c%:P × p)`_i = c × p`_i.
+Lemma coefCM c p i : (c%:P × p)`_i = c × p`_i.

-Lemma coefMC c p i : (p × c%:P)`_i = p`_i × c.
+Lemma coefMC c p i : (p × c%:P)`_i = p`_i × c.

-Lemma polyC_mul : {morph polyC : a b / a × b}.
+Lemma polyC_mul : {morph polyC : a b / a × b}.

Fact polyC_multiplicative : multiplicative polyC.
Canonical polyC_rmorphism := AddRMorphism polyC_multiplicative.

-Lemma polyC_exp n : {morph polyC : c / c ^+ n}.
+Lemma polyC_exp n : {morph polyC : c / c ^+ n}.

-Lemma size_exp_leq p n : size (p ^+ n) ((size p).-1 × n).+1.
+Lemma size_exp_leq p n : size (p ^+ n) ((size p).-1 × n).+1.

-Lemma size_Msign p n : size ((-1) ^+ n × p) = size p.
+Lemma size_Msign p n : size ((-1) ^+ n × p) = size p.

-Fact coefp0_multiplicative : multiplicative (coefp 0 : {poly R} R).
+Fact coefp0_multiplicative : multiplicative (coefp 0 : {poly R} R).

Canonical coefp0_rmorphism := AddRMorphism coefp0_multiplicative.
@@ -616,28 +630,28 @@ Algebra structure of polynomials.
-Definition scale_poly_def a (p : {poly R}) := \poly_(i < size p) (a × p`_i).
-Fact scale_poly_key : unit.
-Definition scale_poly := locked_with scale_poly_key scale_poly_def.
-Canonical scale_poly_unlockable := [unlockable fun scale_poly].
+Definition scale_poly_def a (p : {poly R}) := \poly_(i < size p) (a × p`_i).
+Fact scale_poly_key : unit.
+Definition scale_poly := locked_with scale_poly_key scale_poly_def.
+Canonical scale_poly_unlockable := [unlockable fun scale_poly].

-Fact scale_polyE a p : scale_poly a p = a%:P × p.
+Fact scale_polyE a p : scale_poly a p = a%:P × p.

-Fact scale_polyA a b p : scale_poly a (scale_poly b p) = scale_poly (a × b) p.
+Fact scale_polyA a b p : scale_poly a (scale_poly b p) = scale_poly (a × b) p.

-Fact scale_1poly : left_id 1 scale_poly.
+Fact scale_1poly : left_id 1 scale_poly.

-Fact scale_polyDr a : {morph scale_poly a : p q / p + q}.
+Fact scale_polyDr a : {morph scale_poly a : p q / p + q}.

-Fact scale_polyDl p : {morph scale_poly^~ p : a b / a + b}.
+Fact scale_polyDl p : {morph scale_poly^~ p : a b / a + b}.

-Fact scale_polyAl a p q : scale_poly a (p × q) = scale_poly a p × q.
+Fact scale_polyAl a p q : scale_poly a (p × q) = scale_poly a p × q.

Definition poly_lmodMixin :=
@@ -645,30 +659,30 @@
Canonical poly_lmodType :=
-  Eval hnf in LmodType R {poly R} poly_lmodMixin.
+  Eval hnf in LmodType R {poly R} poly_lmodMixin.
Canonical polynomial_lmodType :=
  Eval hnf in LmodType R (polynomial R) poly_lmodMixin.
Canonical poly_lalgType :=
-  Eval hnf in LalgType R {poly R} scale_polyAl.
+  Eval hnf in LalgType R {poly R} scale_polyAl.
Canonical polynomial_lalgType :=
  Eval hnf in LalgType R (polynomial R) scale_polyAl.

-Lemma mul_polyC a p : a%:P × p = a *: p.
+Lemma mul_polyC a p : a%:P × p = a *: p.

-Lemma alg_polyC a : a%:A = a%:P :> {poly R}.
+Lemma alg_polyC a : a%:A = a%:P :> {poly R}.

-Lemma coefZ a p i : (a *: p)`_i = a × p`_i.
+Lemma coefZ a p i : (a *: p)`_i = a × p`_i.

-Lemma size_scale_leq a p : size (a *: p) size p.
+Lemma size_scale_leq a p : size (a *: p) size p.

-Canonical coefp_linear i : {scalar {poly R}} :=
-  AddLinear ((fun a(coefZ a) ^~ i) : scalable_for *%R (coefp i)).
-Canonical coefp0_lrmorphism := [lrmorphism of coefp 0].
+Canonical coefp_linear i : {scalar {poly R}} :=
+  AddLinear ((fun a(coefZ a) ^~ i) : scalable_for *%R (coefp i)).
+Canonical coefp0_lrmorphism := [lrmorphism of coefp 0].

@@ -677,98 +691,98 @@ The indeterminate, at last!
-Definition polyX_def := Poly [:: 0; 1].
-Fact polyX_key : unit.
-Definition polyX : {poly R} := locked_with polyX_key polyX_def.
-Canonical polyX_unlockable := [unlockable of polyX].
+Definition polyX_def := Poly [:: 0; 1].
+Fact polyX_key : unit.
+Definition polyX : {poly R} := locked_with polyX_key polyX_def.
+Canonical polyX_unlockable := [unlockable of polyX].

-Lemma polyseqX : 'X = [:: 0; 1] :> seq R.
+Lemma polyseqX : 'X = [:: 0; 1] :> seq R.

-Lemma size_polyX : size 'X = 2.
+Lemma size_polyX : size 'X = 2.

-Lemma polyX_eq0 : ('X == 0) = false.
+Lemma polyX_eq0 : ('X == 0) = false.

-Lemma coefX i : 'X`_i = (i == 1%N)%:R.
+Lemma coefX i : 'X`_i = (i == 1%N)%:R.

-Lemma lead_coefX : lead_coef 'X = 1.
+Lemma lead_coefX : lead_coef 'X = 1.

-Lemma commr_polyX p : GRing.comm p 'X.
+Lemma commr_polyX p : GRing.comm p 'X.

-Lemma coefMX p i : (p × 'X)`_i = (if (i == 0)%N then 0 else p`_i.-1).
+Lemma coefMX p i : (p × 'X)`_i = (if (i == 0)%N then 0 else p`_i.-1).

-Lemma coefXM p i : ('X × p)`_i = (if (i == 0)%N then 0 else p`_i.-1).
+Lemma coefXM p i : ('X × p)`_i = (if (i == 0)%N then 0 else p`_i.-1).

-Lemma cons_poly_def p a : cons_poly a p = p × 'X + a%:P.
+Lemma cons_poly_def p a : cons_poly a p = p × 'X + a%:P.

-Lemma poly_ind (K : {poly R} Type) :
-  K 0 ( p c, K p K (p × 'X + c%:P)) ( p, K p).
+Lemma poly_ind (K : {poly R} Type) :
+  K 0 ( p c, K p K (p × 'X + c%:P)) ( p, K p).

-Lemma polyseqXsubC a : 'X - a%:P = [:: - a; 1] :> seq R.
+Lemma polyseqXsubC a : 'X - a%:P = [:: - a; 1] :> seq R.

-Lemma size_XsubC a : size ('X - a%:P) = 2%N.
+Lemma size_XsubC a : size ('X - a%:P) = 2%N.

-Lemma size_XaddC b : size ('X + b%:P) = 2.
+Lemma size_XaddC b : size ('X + b%:P) = 2.

-Lemma lead_coefXsubC a : lead_coef ('X - a%:P) = 1.
+Lemma lead_coefXsubC a : lead_coef ('X - a%:P) = 1.

-Lemma polyXsubC_eq0 a : ('X - a%:P == 0) = false.
+Lemma polyXsubC_eq0 a : ('X - a%:P == 0) = false.

Lemma size_MXaddC p c :
-  size (p × 'X + c%:P) = (if (p == 0) && (c == 0) then 0%N else (size p).+1).
+  size (p × 'X + c%:P) = (if (p == 0) && (c == 0) then 0%N else (size p).+1).

-Lemma polyseqMX p : p != 0 p × 'X = 0 :: p :> seq R.
+Lemma polyseqMX p : p != 0 p × 'X = 0 :: p :> seq R.

-Lemma size_mulX p : p != 0 size (p × 'X) = (size p).+1.
+Lemma size_mulX p : p != 0 size (p × 'X) = (size p).+1.

-Lemma lead_coefMX p : lead_coef (p × 'X) = lead_coef p.
+Lemma lead_coefMX p : lead_coef (p × 'X) = lead_coef p.

-Lemma size_XmulC a : a != 0 size ('X × a%:P) = 2.
+Lemma size_XmulC a : a != 0 size ('X × a%:P) = 2.


-Lemma coefXn n i : 'X^n`_i = (i == n)%:R.
+Lemma coefXn n i : 'X^n`_i = (i == n)%:R.

-Lemma polyseqXn n : 'X^n = rcons (nseq n 0) 1 :> seq R.
+Lemma polyseqXn n : 'X^n = rcons (nseq n 0) 1 :> seq R.

-Lemma size_polyXn n : size 'X^n = n.+1.
+Lemma size_polyXn n : size 'X^n = n.+1.

-Lemma commr_polyXn p n : GRing.comm p 'X^n.
+Lemma commr_polyXn p n : GRing.comm p 'X^n.

-Lemma lead_coefXn n : lead_coef 'X^n = 1.
+Lemma lead_coefXn n : lead_coef 'X^n = 1.

-Lemma polyseqMXn n p : p != 0 p × 'X^n = ncons n 0 p :> seq R.
+Lemma polyseqMXn n p : p != 0 p × 'X^n = ncons n 0 p :> seq R.

-Lemma coefMXn n p i : (p × 'X^n)`_i = if i < n then 0 else p`_(i - n).
+Lemma coefMXn n p i : (p × 'X^n)`_i = if i < n then 0 else p`_(i - n).

-Lemma coefXnM n p i : ('X^n × p)`_i = if i < n then 0 else p`_(i - n).
+Lemma coefXnM n p i : ('X^n × p)`_i = if i < n then 0 else p`_(i - n).

@@ -777,7 +791,7 @@ Expansion of a polynomial as an indexed sum
-Lemma poly_def n E : \poly_(i < n) E i = \sum_(i < n) E i *: 'X^i.
+Lemma poly_def n E : \poly_(i < n) E i = \sum_(i < n) E i *: 'X^i.

@@ -786,66 +800,66 @@ Monic predicate
-Definition monic := [qualify p | lead_coef p == 1].
-Fact monic_key : pred_key monic.
-Canonical monic_keyed := KeyedQualifier monic_key.
+Definition monic := [qualify p | lead_coef p == 1].
+Fact monic_key : pred_key monic.
+Canonical monic_keyed := KeyedQualifier monic_key.

-Lemma monicE p : (p \is monic) = (lead_coef p == 1).
-Lemma monicP p : reflect (lead_coef p = 1) (p \is monic).
+Lemma monicE p : (p \is monic) = (lead_coef p == 1).
+Lemma monicP p : reflect (lead_coef p = 1) (p \is monic).

-Lemma monic1 : 1 \is monic.
-Lemma monicX : 'X \is monic.
-Lemma monicXn n : 'X^n \is monic.
+Lemma monic1 : 1 \is monic.
+Lemma monicX : 'X \is monic.
+Lemma monicXn n : 'X^n \is monic.

-Lemma monic_neq0 p : p \is monic p != 0.
+Lemma monic_neq0 p : p \is monic p != 0.

-Lemma lead_coef_monicM p q : p \is monic lead_coef (p × q) = lead_coef q.
+Lemma lead_coef_monicM p q : p \is monic lead_coef (p × q) = lead_coef q.

-Lemma lead_coef_Mmonic p q : q \is monic lead_coef (p × q) = lead_coef p.
+Lemma lead_coef_Mmonic p q : q \is monic lead_coef (p × q) = lead_coef p.

Lemma size_monicM p q :
-  p \is monic q != 0 size (p × q) = (size p + size q).-1.
+  p \is monic q != 0 size (p × q) = (size p + size q).-1.

Lemma size_Mmonic p q :
-  p != 0 q \is monic size (p × q) = (size p + size q).-1.
+  p != 0 q \is monic size (p × q) = (size p + size q).-1.

-Lemma monicMl p q : p \is monic (p × q \is monic) = (q \is monic).
+Lemma monicMl p q : p \is monic (p × q \is monic) = (q \is monic).

-Lemma monicMr p q : q \is monic (p × q \is monic) = (p \is monic).
+Lemma monicMr p q : q \is monic (p × q \is monic) = (p \is monic).

Fact monic_mulr_closed : mulr_closed monic.
Canonical monic_mulrPred := MulrPred monic_mulr_closed.

-Lemma monic_exp p n : p \is monic p ^+ n \is monic.
+Lemma monic_exp p n : p \is monic p ^+ n \is monic.

-Lemma monic_prod I rI (P : pred I) (F : I {poly R}):
-  ( i, P i F i \is monic) \prod_(i <- rI | P i) F i \is monic.
+Lemma monic_prod I rI (P : pred I) (F : I {poly R}):
+  ( i, P i F i \is monic) \prod_(i <- rI | P i) F i \is monic.

-Lemma monicXsubC c : 'X - c%:P \is monic.
+Lemma monicXsubC c : 'X - c%:P \is monic.

-Lemma monic_prod_XsubC I rI (P : pred I) (F : I R) :
-  \prod_(i <- rI | P i) ('X - (F i)%:P) \is monic.
+Lemma monic_prod_XsubC I rI (P : pred I) (F : I R) :
+  \prod_(i <- rI | P i) ('X - (F i)%:P) \is monic.

-Lemma size_prod_XsubC I rI (F : I R) :
-  size (\prod_(i <- rI) ('X - (F i)%:P)) = (size rI).+1.
+Lemma size_prod_XsubC I rI (F : I R) :
+  size (\prod_(i <- rI) ('X - (F i)%:P)) = (size rI).+1.

-Lemma size_exp_XsubC n a : size (('X - a%:P) ^+ n) = n.+1.
+Lemma size_exp_XsubC n a : size (('X - a%:P) ^+ n) = n.+1.

@@ -856,41 +870,41 @@

-Lemma lreg_lead p : GRing.lreg (lead_coef p) GRing.lreg p.
+Lemma lreg_lead p : GRing.lreg (lead_coef p) GRing.lreg p.

-Lemma rreg_lead p : GRing.rreg (lead_coef p) GRing.rreg p.
+Lemma rreg_lead p : GRing.rreg (lead_coef p) GRing.rreg p.

-Lemma lreg_lead0 p : GRing.lreg (lead_coef p) p != 0.
+Lemma lreg_lead0 p : GRing.lreg (lead_coef p) p != 0.

-Lemma rreg_lead0 p : GRing.rreg (lead_coef p) p != 0.
+Lemma rreg_lead0 p : GRing.rreg (lead_coef p) p != 0.

-Lemma lreg_size c p : GRing.lreg c size (c *: p) = size p.
+Lemma lreg_size c p : GRing.lreg c size (c *: p) = size p.

-Lemma lreg_polyZ_eq0 c p : GRing.lreg c (c *: p == 0) = (p == 0).
+Lemma lreg_polyZ_eq0 c p : GRing.lreg c (c *: p == 0) = (p == 0).

Lemma lead_coef_lreg c p :
-  GRing.lreg c lead_coef (c *: p) = c × lead_coef p.
+  GRing.lreg c lead_coef (c *: p) = c × lead_coef p.

-Lemma rreg_size c p : GRing.rreg c size (p × c%:P) = size p.
+Lemma rreg_size c p : GRing.rreg c size (p × c%:P) = size p.

-Lemma rreg_polyMC_eq0 c p : GRing.rreg c (p × c%:P == 0) = (p == 0).
+Lemma rreg_polyMC_eq0 c p : GRing.rreg c (p × c%:P == 0) = (p == 0).

Lemma rreg_div0 q r d :
-    GRing.rreg (lead_coef d) size r < size d
-  (q × d + r == 0) = (q == 0) && (r == 0).
+    GRing.rreg (lead_coef d) size r < size d
+  (q × d + r == 0) = (q == 0) && (r == 0).

Lemma monic_comreg p :
-  p \is monic GRing.comm p (lead_coef p)%:P GRing.rreg (lead_coef p).
+  p \is monic GRing.comm p (lead_coef p)%:P GRing.rreg (lead_coef p).

@@ -900,75 +914,75 @@
Implicit Types s rs : seq R.
-Fixpoint horner_rec s x := if s is a :: s' then horner_rec s' x × x + a else 0.
+Fixpoint horner_rec s x := if s is a :: s' then horner_rec s' x × x + a else 0.
Definition horner p := horner_rec p.


-Lemma horner0 x : (0 : {poly R}).[x] = 0.
+Lemma horner0 x : (0 : {poly R}).[x] = 0.

-Lemma hornerC c x : (c%:P).[x] = c.
+Lemma hornerC c x : (c%:P).[x] = c.

-Lemma hornerX x : 'X.[x] = x.
+Lemma hornerX x : 'X.[x] = x.

-Lemma horner_cons p c x : (cons_poly c p).[x] = p.[x] × x + c.
+Lemma horner_cons p c x : (cons_poly c p).[x] = p.[x] × x + c.

-Lemma horner_coef0 p : p.[0] = p`_0.
+Lemma horner_coef0 p : p.[0] = p`_0.

-Lemma hornerMXaddC p c x : (p × 'X + c%:P).[x] = p.[x] × x + c.
+Lemma hornerMXaddC p c x : (p × 'X + c%:P).[x] = p.[x] × x + c.

-Lemma hornerMX p x : (p × 'X).[x] = p.[x] × x.
+Lemma hornerMX p x : (p × 'X).[x] = p.[x] × x.

-Lemma horner_Poly s x : (Poly s).[x] = horner_rec s x.
+Lemma horner_Poly s x : (Poly s).[x] = horner_rec s x.

-Lemma horner_coef p x : p.[x] = \sum_(i < size p) p`_i × x ^+ i.
+Lemma horner_coef p x : p.[x] = \sum_(i < size p) p`_i × x ^+ i.

Lemma horner_coef_wide n p x :
-  size p n p.[x] = \sum_(i < n) p`_i × x ^+ i.
+  size p n p.[x] = \sum_(i < n) p`_i × x ^+ i.

-Lemma horner_poly n E x : (\poly_(i < n) E i).[x] = \sum_(i < n) E i × x ^+ i.
+Lemma horner_poly n E x : (\poly_(i < n) E i).[x] = \sum_(i < n) E i × x ^+ i.

-Lemma hornerN p x : (- p).[x] = - p.[x].
+Lemma hornerN p x : (- p).[x] = - p.[x].

-Lemma hornerD p q x : (p + q).[x] = p.[x] + q.[x].
+Lemma hornerD p q x : (p + q).[x] = p.[x] + q.[x].

-Lemma hornerXsubC a x : ('X - a%:P).[x] = x - a.
+Lemma hornerXsubC a x : ('X - a%:P).[x] = x - a.

-Lemma horner_sum I (r : seq I) (P : pred I) F x :
-  (\sum_(i <- r | P i) F i).[x] = \sum_(i <- r | P i) (F i).[x].
+Lemma horner_sum I (r : seq I) (P : pred I) F x :
+  (\sum_(i <- r | P i) F i).[x] = \sum_(i <- r | P i) (F i).[x].

-Lemma hornerCM a p x : (a%:P × p).[x] = a × p.[x].
+Lemma hornerCM a p x : (a%:P × p).[x] = a × p.[x].

-Lemma hornerZ c p x : (c *: p).[x] = c × p.[x].
+Lemma hornerZ c p x : (c *: p).[x] = c × p.[x].

-Lemma hornerMn n p x : (p *+ n).[x] = p.[x] *+ n.
+Lemma hornerMn n p x : (p *+ n).[x] = p.[x] *+ n.

-Definition comm_coef p x := i, p`_i × x = x × p`_i.
+Definition comm_coef p x := i, p`_i × x = x × p`_i.

-Definition comm_poly p x := x × p.[x] = p.[x] × x.
+Definition comm_poly p x := x × p.[x] = p.[x] × x.

-Lemma comm_coef_poly p x : comm_coef p x comm_poly p x.
+Lemma comm_coef_poly p x : comm_coef p x comm_poly p x.

Lemma comm_poly0 x : comm_poly 0 x.
@@ -977,71 +991,71 @@ Lemma comm_poly1 x : comm_poly 1 x.

-Lemma comm_polyX x : comm_poly 'X x.
+Lemma comm_polyX x : comm_poly 'X x.

-Lemma hornerM_comm p q x : comm_poly q x (p × q).[x] = p.[x] × q.[x].
+Lemma hornerM_comm p q x : comm_poly q x (p × q).[x] = p.[x] × q.[x].

-Lemma horner_exp_comm p x n : comm_poly p x (p ^+ n).[x] = p.[x] ^+ n.
+Lemma horner_exp_comm p x n : comm_poly p x (p ^+ n).[x] = p.[x] ^+ n.

-Lemma hornerXn x n : ('X^n).[x] = x ^+ n.
+Lemma hornerXn x n : ('X^n).[x] = x ^+ n.

Definition hornerE_comm :=
-  (hornerD, hornerN, hornerX, hornerC, horner_cons,
-   simp, hornerCM, hornerZ,
-   (fun p xhornerM_comm p (comm_polyX x))).
+  (hornerD, hornerN, hornerX, hornerC, horner_cons,
+   simp, hornerCM, hornerZ,
+   (fun p xhornerM_comm p (comm_polyX x))).

-Definition root p : pred R := fun xp.[x] == 0.
+Definition root p : pred R := fun xp.[x] == 0.

-Lemma mem_root p x : x \in root p = (p.[x] == 0).
+Lemma mem_root p x : x \in root p = (p.[x] == 0).

-Lemma rootE p x : (root p x = (p.[x] == 0)) × ((x \in root p) = (p.[x] == 0)).
+Lemma rootE p x : (root p x = (p.[x] == 0)) × ((x \in root p) = (p.[x] == 0)).

-Lemma rootP p x : reflect (p.[x] = 0) (root p x).
+Lemma rootP p x : reflect (p.[x] = 0) (root p x).

-Lemma rootPt p x : reflect (p.[x] == 0) (root p x).
+Lemma rootPt p x : reflect (p.[x] == 0) (root p x).

-Lemma rootPf p x : reflect ((p.[x] == 0) = false) (~~ root p x).
+Lemma rootPf p x : reflect ((p.[x] == 0) = false) (~~ root p x).

-Lemma rootC a x : root a%:P x = (a == 0).
+Lemma rootC a x : root a%:P x = (a == 0).

Lemma root0 x : root 0 x.

-Lemma root1 x : ~~ root 1 x.
+Lemma root1 x : ~~ root 1 x.

-Lemma rootX x : root 'X x = (x == 0).
+Lemma rootX x : root 'X x = (x == 0).

-Lemma rootN p x : root (- p) x = root p x.
+Lemma rootN p x : root (- p) x = root p x.

-Lemma root_size_gt1 a p : p != 0 root p a 1 < size p.
+Lemma root_size_gt1 a p : p != 0 root p a 1 < size p.

-Lemma root_XsubC a x : root ('X - a%:P) x = (x == a).
+Lemma root_XsubC a x : root ('X - a%:P) x = (x == a).

-Lemma root_XaddC a x : root ('X + a%:P) x = (x == - a).
+Lemma root_XaddC a x : root ('X + a%:P) x = (x == - a).

-Theorem factor_theorem p a : reflect ( q, p = q × ('X - a%:P)) (root p a).
+Theorem factor_theorem p a : reflect ( q, p = q × ('X - a%:P)) (root p a).

Lemma multiplicity_XsubC p a :
-  {m | exists2 q, (p != 0) ==> ~~ root q a & p = q × ('X - a%:P) ^+ m}.
+  {m | exists2 q, (p != 0) ==> ~~ root q a & p = q × ('X - a%:P) ^+ m}.

@@ -1052,63 +1066,63 @@

-Lemma size_Xn_sub_1 n : n > 0 size ('X^n - 1 : {poly R}) = n.+1.
+Lemma size_Xn_sub_1 n : n > 0 size ('X^n - 1 : {poly R}) = n.+1.

-Lemma monic_Xn_sub_1 n : n > 0 'X^n - 1 \is monic.
+Lemma monic_Xn_sub_1 n : n > 0 'X^n - 1 \is monic.

-Definition root_of_unity n : pred R := root ('X^n - 1).
+Definition root_of_unity n : pred R := root ('X^n - 1).

-Lemma unity_rootE n z : n.-unity_root z = (z ^+ n == 1).
+Lemma unity_rootE n z : n.-unity_root z = (z ^+ n == 1).

-Lemma unity_rootP n z : reflect (z ^+ n = 1) (n.-unity_root z).
+Lemma unity_rootP n z : reflect (z ^+ n = 1) (n.-unity_root z).

Definition primitive_root_of_unity n z :=
-  (n > 0) && [ i : 'I_n, i.+1.-unity_root z == (i.+1 == n)].
+  (n > 0) && [ i : 'I_n, i.+1.-unity_root z == (i.+1 == n)].

Lemma prim_order_exists n z :
-  n > 0 z ^+ n = 1 {m | m.-primitive_root z & (m %| n)}.
+  n > 0 z ^+ n = 1 {m | m.-primitive_root z & (m %| n)}.

Section OnePrimitive.

-Variables (n : nat) (z : R).
-Hypothesis prim_z : n.-primitive_root z.
+Variables (n : nat) (z : R).
+Hypothesis prim_z : n.-primitive_root z.

-Lemma prim_order_gt0 : n > 0.
+Lemma prim_order_gt0 : n > 0.
Let n_gt0 := prim_order_gt0.

-Lemma prim_expr_order : z ^+ n = 1.
+Lemma prim_expr_order : z ^+ n = 1.

-Lemma prim_expr_mod i : z ^+ (i %% n) = z ^+ i.
+Lemma prim_expr_mod i : z ^+ (i %% n) = z ^+ i.

-Lemma prim_order_dvd i : (n %| i) = (z ^+ i == 1).
+Lemma prim_order_dvd i : (n %| i) = (z ^+ i == 1).

-Lemma eq_prim_root_expr i j : (z ^+ i == z ^+ j) = (i == j %[mod n]).
+Lemma eq_prim_root_expr i j : (z ^+ i == z ^+ j) = (i == j %[mod n]).

-Lemma exp_prim_root k : (n %/ gcdn k n).-primitive_root (z ^+ k).
+Lemma exp_prim_root k : (n %/ gcdn k n).-primitive_root (z ^+ k).

-Lemma dvdn_prim_root m : (m %| n)%N m.-primitive_root (z ^+ (n %/ m)).
+Lemma dvdn_prim_root m : (m %| n)%N m.-primitive_root (z ^+ (n %/ m)).

End OnePrimitive.

Lemma prim_root_exp_coprime n z k :
-  n.-primitive_root z n.-primitive_root (z ^+ k) = coprime k n.
+  n.-primitive_root z n.-primitive_root (z ^+ k) = coprime k n.

@@ -1119,35 +1133,37 @@

-Definition polyOver (S : pred_class) :=
-  [qualify a p : {poly R} | all (mem S) p].
+Implicit Type S : {pred R}.

-Fact polyOver_key S : pred_key (polyOver S).
-Canonical polyOver_keyed S := KeyedQualifier (polyOver_key S).
+Definition polyOver S := [qualify a p : {poly R} | all (mem S) p].

-Lemma polyOverS (S1 S2 : pred_class) :
-  {subset S1 S2} {subset polyOver S1 polyOver S2}.
+Fact polyOver_key S : pred_key (polyOver S).
+Canonical polyOver_keyed S := KeyedQualifier (polyOver_key S).

-Lemma polyOver0 S : 0 \is a polyOver S.
+Lemma polyOverS (S1 S2 : {pred R}) :
+  {subset S1 S2} {subset polyOver S1 polyOver S2}.
+ +
+Lemma polyOver0 S : 0 \is a polyOver S.

-Lemma polyOver_poly (S : pred_class) n E :
-  ( i, i < n E i \in S) \poly_(i < n) E i \is a polyOver S.
+Lemma polyOver_poly S n E :
+  ( i, i < n E i \in S) \poly_(i < n) E i \is a polyOver S.

Section PolyOverAdd.

-Variables (S : predPredType R) (addS : addrPred S) (kS : keyed_pred addS).
+Variables (S : {pred R}) (addS : addrPred S) (kS : keyed_pred addS).

-Lemma polyOverP {p} : reflect ( i, p`_i \in kS) (p \in polyOver kS).
+Lemma polyOverP {p} : reflect ( i, p`_i \in kS) (p \in polyOver kS).

-Lemma polyOverC c : (c%:P \in polyOver kS) = (c \in kS).
+Lemma polyOverC c : (c%:P \in polyOver kS) = (c \in kS).

Fact polyOver_addr_closed : addr_closed (polyOver kS).
@@ -1157,7 +1173,7 @@ End PolyOverAdd.

-Fact polyOverNr S (addS : zmodPred S) (kS : keyed_pred addS) :
+Fact polyOverNr S (addS : zmodPred S) (kS : keyed_pred addS) :
  oppr_closed (polyOver kS).
Canonical polyOver_opprPred S addS kS := OpprPred (@polyOverNr S addS kS).
Canonical polyOver_zmodPred S addS kS := ZmodPred (@polyOverNr S addS kS).
@@ -1166,7 +1182,7 @@ Section PolyOverSemiring.

-Context (S : pred_class) (ringS : @semiringPred R S) (kS : keyed_pred ringS).
+Variables (S : {pred R}) (ringS : semiringPred S) (kS : keyed_pred ringS).

Fact polyOver_mulr_closed : mulr_closed (polyOver kS).
@@ -1174,13 +1190,13 @@ Canonical polyOver_semiringPred := SemiringPred polyOver_mulr_closed.

-Lemma polyOverZ : {in kS & polyOver kS, c p, c *: p \is a polyOver kS}.
+Lemma polyOverZ : {in kS & polyOver kS, c p, c *: p \is a polyOver kS}.

-Lemma polyOverX : 'X \in polyOver kS.
+Lemma polyOverX : 'X \in polyOver kS.

-Lemma rpred_horner : {in polyOver kS & kS, p x, p.[x] \in kS}.
+Lemma rpred_horner : {in polyOver kS & kS, p x, p.[x] \in kS}.

End PolyOverSemiring.
@@ -1189,12 +1205,12 @@ Section PolyOverRing.

-Context (S : pred_class) (ringS : @subringPred R S) (kS : keyed_pred ringS).
+Variables (S : {pred R}) (ringS : subringPred S) (kS : keyed_pred ringS).
Canonical polyOver_smulrPred := SmulrPred (polyOver_mulr_closed kS).
Canonical polyOver_subringPred := SubringPred (polyOver_mulr_closed kS).

-Lemma polyOverXsubC c : ('X - c%:P \in polyOver kS) = (c \in kS).
+Lemma polyOverXsubC c : ('X - c%:P \in polyOver kS) = (c \in kS).

End PolyOverRing.
@@ -1208,25 +1224,25 @@

-Definition deriv p := \poly_(i < (size p).-1) (p`_i.+1 *+ i.+1).
+Definition deriv p := \poly_(i < (size p).-1) (p`_i.+1 *+ i.+1).


-Lemma coef_deriv p i : p^``_i = p`_i.+1 *+ i.+1.
+Lemma coef_deriv p i : p^``_i = p`_i.+1 *+ i.+1.

-Lemma polyOver_deriv S (ringS : semiringPred S) (kS : keyed_pred ringS) :
-  {in polyOver kS, p, p^` \is a polyOver kS}.
+Lemma polyOver_deriv S (ringS : semiringPred S) (kS : keyed_pred ringS) :
+  {in polyOver kS, p, p^` \is a polyOver kS}.

-Lemma derivC c : c%:P^` = 0.
+Lemma derivC c : c%:P^` = 0.

-Lemma derivX : ('X)^` = 1.
+Lemma derivX : ('X)^` = 1.

-Lemma derivXn n : 'X^n^` = 'X^n.-1 *+ n.
+Lemma derivXn n : 'X^n^` = 'X^n.-1 *+ n.

Fact deriv_is_linear : linear deriv.
@@ -1234,42 +1250,42 @@ Canonical deriv_linear := Linear deriv_is_linear.

-Lemma deriv0 : 0^` = 0.
+Lemma deriv0 : 0^` = 0.

-Lemma derivD : {morph deriv : p q / p + q}.
+Lemma derivD : {morph deriv : p q / p + q}.

-Lemma derivN : {morph deriv : p / - p}.
+Lemma derivN : {morph deriv : p / - p}.

-Lemma derivB : {morph deriv : p q / p - q}.
+Lemma derivB : {morph deriv : p q / p - q}.

-Lemma derivXsubC (a : R) : ('X - a%:P)^` = 1.
+Lemma derivXsubC (a : R) : ('X - a%:P)^` = 1.

-Lemma derivMn n p : (p *+ n)^` = p^` *+ n.
+Lemma derivMn n p : (p *+ n)^` = p^` *+ n.

-Lemma derivMNn n p : (p *- n)^` = p^` *- n.
+Lemma derivMNn n p : (p *- n)^` = p^` *- n.

-Lemma derivZ c p : (c *: p)^` = c *: p^`.
+Lemma derivZ c p : (c *: p)^` = c *: p^`.

-Lemma deriv_mulC c p : (c%:P × p)^` = c%:P × p^`.
+Lemma deriv_mulC c p : (c%:P × p)^` = c%:P × p^`.

-Lemma derivMXaddC p c : (p × 'X + c%:P)^` = p + p^` × 'X.
+Lemma derivMXaddC p c : (p × 'X + c%:P)^` = p + p^` × 'X.

-Lemma derivM p q : (p × q)^` = p^` × q + p × q^`.
+Lemma derivM p q : (p × q)^` = p^` × q + p × q^`.

Definition derivE := Eval lazy beta delta [morphism_2 morphism_1] in
-  (derivZ, deriv_mulC, derivC, derivX, derivMXaddC, derivXsubC, derivM, derivB,
-   derivD, derivN, derivXn, derivM, derivMn).
+  (derivZ, deriv_mulC, derivC, derivX, derivMXaddC, derivXsubC, derivM, derivB,
+   derivD, derivN, derivXn, derivM, derivMn).

@@ -1283,23 +1299,23 @@

-Lemma derivn0 p : p^`(0) = p.
+Lemma derivn0 p : p^`(0) = p.

-Lemma derivn1 p : p^`(1) = p^`.
+Lemma derivn1 p : p^`(1) = p^`.

-Lemma derivnS p n : p^`(n.+1) = p^`(n)^`.
+Lemma derivnS p n : p^`(n.+1) = p^`(n)^`.

-Lemma derivSn p n : p^`(n.+1) = p^`^`(n).
+Lemma derivSn p n : p^`(n.+1) = p^`^`(n).

-Lemma coef_derivn n p i : p^`(n)`_i = p`_(n + i) *+ (n + i) ^_ n.
+Lemma coef_derivn n p i : p^`(n)`_i = p`_(n + i) *+ (n + i) ^_ n.

-Lemma polyOver_derivn S (ringS : semiringPred S) (kS : keyed_pred ringS) :
-  {in polyOver kS, p n, p^`(n) \is a polyOver kS}.
+Lemma polyOver_derivn S (ringS : semiringPred S) (kS : keyed_pred ringS) :
+  {in polyOver kS, p n, p^`(n) \is a polyOver kS}.

Fact derivn_is_linear n : linear (derivn n).
@@ -1307,38 +1323,38 @@ Canonical derivn_linear n := Linear (derivn_is_linear n).

-Lemma derivnC c n : c%:P^`(n) = if n == 0%N then c%:P else 0.
+Lemma derivnC c n : c%:P^`(n) = if n == 0%N then c%:P else 0.

-Lemma derivnD n : {morph derivn n : p q / p + q}.
+Lemma derivnD n : {morph derivn n : p q / p + q}.

-Lemma derivn_sub n : {morph derivn n : p q / p - q}.
+Lemma derivn_sub n : {morph derivn n : p q / p - q}.

-Lemma derivnMn n m p : (p *+ m)^`(n) = p^`(n) *+ m.
+Lemma derivnMn n m p : (p *+ m)^`(n) = p^`(n) *+ m.

-Lemma derivnMNn n m p : (p *- m)^`(n) = p^`(n) *- m.
+Lemma derivnMNn n m p : (p *- m)^`(n) = p^`(n) *- m.

-Lemma derivnN n : {morph derivn n : p / - p}.
+Lemma derivnN n : {morph derivn n : p / - p}.

Lemma derivnZ n : scalable (derivn n).

-Lemma derivnXn m n : 'X^m^`(n) = 'X^(m - n) *+ m ^_ n.
+Lemma derivnXn m n : 'X^m^`(n) = 'X^(m - n) *+ m ^_ n.

Lemma derivnMXaddC n p c :
-  (p × 'X + c%:P)^`(n.+1) = p^`(n) *+ n.+1 + p^`(n.+1) × 'X.
+  (p × 'X + c%:P)^`(n.+1) = p^`(n) *+ n.+1 + p^`(n.+1) × 'X.

-Lemma derivn_poly0 p n : size p n p^`(n) = 0.
+Lemma derivn_poly0 p n : size p n p^`(n) = 0.

-Lemma lt_size_deriv (p : {poly R}) : p != 0 size p^` < size p.
+Lemma lt_size_deriv (p : {poly R}) : p != 0 size p^` < size p.

@@ -1349,12 +1365,12 @@

-Definition nderivn n p := \poly_(i < size p - n) (p`_(n + i) *+ 'C(n + i, n)).
+Definition nderivn n p := \poly_(i < size p - n) (p`_(n + i) *+ 'C(n + i, n)).


-Lemma coef_nderivn n p i : p^`N(n)`_i = p`_(n + i) *+ 'C(n + i, n).
+Lemma coef_nderivn n p i : p^`N(n)`_i = p`_(n + i) *+ 'C(n + i, n).

@@ -1363,23 +1379,23 @@ Here is the division by n!
-Lemma nderivn_def n p : p^`(n) = p^`N(n) *+ n`!.
+Lemma nderivn_def n p : p^`(n) = p^`N(n) *+ n`!.

-Lemma polyOver_nderivn S (ringS : semiringPred S) (kS : keyed_pred ringS) :
-  {in polyOver kS, p n, p^`N(n) \in polyOver kS}.
+Lemma polyOver_nderivn S (ringS : semiringPred S) (kS : keyed_pred ringS) :
+  {in polyOver kS, p n, p^`N(n) \in polyOver kS}.

-Lemma nderivn0 p : p^`N(0) = p.
+Lemma nderivn0 p : p^`N(0) = p.

-Lemma nderivn1 p : p^`N(1) = p^`.
+Lemma nderivn1 p : p^`N(1) = p^`.

-Lemma nderivnC c n : (c%:P)^`N(n) = if n == 0%N then c%:P else 0.
+Lemma nderivnC c n : (c%:P)^`N(n) = if n == 0%N then c%:P else 0.

-Lemma nderivnXn m n : 'X^m^`N(n) = 'X^(m - n) *+ 'C(m, n).
+Lemma nderivnXn m n : 'X^m^`N(n) = 'X^(m - n) *+ 'C(m, n).

Fact nderivn_is_linear n : linear (nderivn n).
@@ -1387,55 +1403,66 @@ Canonical nderivn_linear n := Linear (nderivn_is_linear n).

-Lemma nderivnD n : {morph nderivn n : p q / p + q}.
+Lemma nderivnD n : {morph nderivn n : p q / p + q}.

-Lemma nderivnB n : {morph nderivn n : p q / p - q}.
+Lemma nderivnB n : {morph nderivn n : p q / p - q}.

-Lemma nderivnMn n m p : (p *+ m)^`N(n) = p^`N(n) *+ m.
+Lemma nderivnMn n m p : (p *+ m)^`N(n) = p^`N(n) *+ m.

-Lemma nderivnMNn n m p : (p *- m)^`N(n) = p^`N(n) *- m.
+Lemma nderivnMNn n m p : (p *- m)^`N(n) = p^`N(n) *- m.

-Lemma nderivnN n : {morph nderivn n : p / - p}.
+Lemma nderivnN n : {morph nderivn n : p / - p}.

Lemma nderivnZ n : scalable (nderivn n).

Lemma nderivnMXaddC n p c :
-  (p × 'X + c%:P)^`N(n.+1) = p^`N(n) + p^`N(n.+1) × 'X.
+  (p × 'X + c%:P)^`N(n.+1) = p^`N(n) + p^`N(n.+1) × 'X.

-Lemma nderivn_poly0 p n : size p n p^`N(n) = 0.
+Lemma nderivn_poly0 p n : size p n p^`N(n) = 0.

Lemma nderiv_taylor p x h :
-  GRing.comm x h p.[x + h] = \sum_(i < size p) p^`N(i).[x] × h ^+ i.
+  GRing.comm x h p.[x + h] = \sum_(i < size p) p^`N(i).[x] × h ^+ i.

Lemma nderiv_taylor_wide n p x h :
-    GRing.comm x h size p n
-  p.[x + h] = \sum_(i < n) p^`N(i).[x] × h ^+ i.
+    GRing.comm x h size p n
+  p.[x + h] = \sum_(i < n) p^`N(i).[x] × h ^+ i.
+
+Lemma eq_poly n E1 E2 : E1 =1 E2 poly n E1 = poly n E2.
+
End PolynomialTheory.

-Notation "\poly_ ( i < n ) E" := (poly n (fun iE)) : ring_scope.
-Notation "c %:P" := (polyC c) : ring_scope.
-Notation "'X" := (polyX _) : ring_scope.
-Notation "''X^' n" := ('X ^+ n) : ring_scope.
-Notation "p .[ x ]" := (horner p x) : ring_scope.
-Notation "n .-unity_root" := (root_of_unity n) : ring_scope.
-Notation "n .-primitive_root" := (primitive_root_of_unity n) : ring_scope.
-Notation "a ^` " := (deriv a) : ring_scope.
-Notation "a ^` ( n )" := (derivn n a) : ring_scope.
-Notation "a ^`N ( n )" := (nderivn n a) : ring_scope.
+Notation "\poly_ ( i < n ) E" := (poly n (fun iE)) : ring_scope.
+Notation "c %:P" := (polyC c) : ring_scope.
+Notation "'X" := (polyX _) : ring_scope.
+Notation "''X^' n" := ('X ^+ n) : ring_scope.
+Notation "p .[ x ]" := (horner p x) : ring_scope.
+Notation "n .-unity_root" := (root_of_unity n) : ring_scope.
+Notation "n .-primitive_root" := (primitive_root_of_unity n) : ring_scope.
+Notation "a ^` " := (deriv a) : ring_scope.
+Notation "a ^` ( n )" := (derivn n a) : ring_scope.
+Notation "a ^`N ( n )" := (nderivn n a) : ring_scope.
+ +

+Canonical polynomial_countZmodType (R : countRingType) :=
+  [countZmodType of polynomial R].
+Canonical poly_countZmodType (R : countRingType) := [countZmodType of {poly R}].
+Canonical polynomial_countRingType (R : countRingType) :=
+  [countRingType of polynomial R].
+Canonical poly_countRingType (R : countRingType) := [countRingType of {poly R}].

@@ -1450,10 +1477,10 @@ Section Definitions.

-Variables (aR rR : ringType) (f : aR rR).
+Variables (aR rR : ringType) (f : aR rR).

-Definition map_poly (p : {poly aR}) := \poly_(i < size p) f p`_i.
+Definition map_poly (p : {poly aR}) := \poly_(i < size p) f p`_i.

@@ -1464,13 +1491,13 @@ instance of size_poly.
-Lemma map_polyE p : map_poly p = Poly (map f p).
+Lemma map_polyE p : map_poly p = Poly (map f p).

Definition commr_rmorph u := x, GRing.comm u (f x).

-Definition horner_morph u of commr_rmorph u := fun p(map_poly p).[u].
+Definition horner_morph u of commr_rmorph u := fun p(map_poly p).[u].

End Definitions.
@@ -1482,92 +1509,92 @@ Section Combinatorial.

-Variables (iR : ringType) (f : aR rR).
+Variables (iR : ringType) (f : aR rR).

-Lemma map_poly0 : 0^f = 0.
+Lemma map_poly0 : 0^f = 0.

-Lemma eq_map_poly (g : aR rR) : f =1 g map_poly f =1 map_poly g.
+Lemma eq_map_poly (g : aR rR) : f =1 g map_poly f =1 map_poly g.

-Lemma map_poly_id g (p : {poly iR}) :
-  {in (p : seq iR), g =1 id} map_poly g p = p.
+Lemma map_poly_id g (p : {poly iR}) :
+  {in (p : seq iR), g =1 id} map_poly g p = p.

-Lemma coef_map_id0 p i : f 0 = 0 (p^f)`_i = f p`_i.
+Lemma coef_map_id0 p i : f 0 = 0 (p^f)`_i = f p`_i.

-Lemma map_Poly_id0 s : f 0 = 0 (Poly s)^f = Poly (map f s).
+Lemma map_Poly_id0 s : f 0 = 0 (Poly s)^f = Poly (map f s).

-Lemma map_poly_comp_id0 (g : iR aR) p :
-  f 0 = 0 map_poly (f \o g) p = (map_poly g p)^f.
+Lemma map_poly_comp_id0 (g : iR aR) p :
+  f 0 = 0 map_poly (f \o g) p = (map_poly g p)^f.

-Lemma size_map_poly_id0 p : f (lead_coef p) != 0 size p^f = size p.
+Lemma size_map_poly_id0 p : f (lead_coef p) != 0 size p^f = size p.

-Lemma map_poly_eq0_id0 p : f (lead_coef p) != 0 (p^f == 0) = (p == 0).
+Lemma map_poly_eq0_id0 p : f (lead_coef p) != 0 (p^f == 0) = (p == 0).

Lemma lead_coef_map_id0 p :
-  f 0 = 0 f (lead_coef p) != 0 lead_coef p^f = f (lead_coef p).
+  f 0 = 0 f (lead_coef p) != 0 lead_coef p^f = f (lead_coef p).

-Hypotheses (inj_f : injective f) (f_0 : f 0 = 0).
+Hypotheses (inj_f : injective f) (f_0 : f 0 = 0).

-Lemma size_map_inj_poly p : size p^f = size p.
+Lemma size_map_inj_poly p : size p^f = size p.

-Lemma map_inj_poly : injective (map_poly f).
+Lemma map_inj_poly : injective (map_poly f).

-Lemma lead_coef_map_inj p : lead_coef p^f = f (lead_coef p).
+Lemma lead_coef_map_inj p : lead_coef p^f = f (lead_coef p).

End Combinatorial.

-Lemma map_polyK (f : aR rR) g :
-  cancel g f f 0 = 0 cancel (map_poly g) (map_poly f).
+Lemma map_polyK (f : aR rR) g :
+  cancel g f f 0 = 0 cancel (map_poly g) (map_poly f).

Section Additive.

-Variables (iR : ringType) (f : {additive aR rR}).
+Variables (iR : ringType) (f : {additive aR rR}).


-Lemma coef_map p i : p^f`_i = f p`_i.
+Lemma coef_map p i : p^f`_i = f p`_i.

-Lemma map_Poly s : (Poly s)^f = Poly (map f s).
+Lemma map_Poly s : (Poly s)^f = Poly (map f s).

-Lemma map_poly_comp (g : iR aR) p :
-  map_poly (f \o g) p = map_poly f (map_poly g p).
+Lemma map_poly_comp (g : iR aR) p :
+  map_poly (f \o g) p = map_poly f (map_poly g p).

Fact map_poly_is_additive : additive (map_poly f).
Canonical map_poly_additive := Additive map_poly_is_additive.

-Lemma map_polyC a : (a%:P)^f = (f a)%:P.
+Lemma map_polyC a : (a%:P)^f = (f a)%:P.

Lemma lead_coef_map_eq p :
-  f (lead_coef p) != 0 lead_coef p^f = f (lead_coef p).
+  f (lead_coef p) != 0 lead_coef p^f = f (lead_coef p).

End Additive.

-Variable f : {rmorphism aR rR}.
-Implicit Types p : {poly aR}.
+Variable f : {rmorphism aR rR}.
+Implicit Types p : {poly aR}.

@@ -1576,34 +1603,34 @@ Canonical map_poly_rmorphism := RMorphism map_poly_is_rmorphism.

-Lemma map_polyZ c p : (c *: p)^f = f c *: p^f.
+Lemma map_polyZ c p : (c *: p)^f = f c *: p^f.
Canonical map_poly_linear :=
-  AddLinear (map_polyZ : scalable_for (f \; *:%R) (map_poly f)).
-Canonical map_poly_lrmorphism := [lrmorphism of map_poly f].
+  AddLinear (map_polyZ : scalable_for (f \; *:%R) (map_poly f)).
+Canonical map_poly_lrmorphism := [lrmorphism of map_poly f].

-Lemma map_polyX : ('X)^f = 'X.
+Lemma map_polyX : ('X)^f = 'X.

-Lemma map_polyXn n : ('X^n)^f = 'X^n.
+Lemma map_polyXn n : ('X^n)^f = 'X^n.

-Lemma monic_map p : p \is monic p^f \is monic.
+Lemma monic_map p : p \is monic p^f \is monic.

-Lemma horner_map p x : p^f.[f x] = f p.[x].
+Lemma horner_map p x : p^f.[f x] = f p.[x].

-Lemma map_comm_poly p x : comm_poly p x comm_poly p^f (f x).
+Lemma map_comm_poly p x : comm_poly p x comm_poly p^f (f x).

-Lemma map_comm_coef p x : comm_coef p x comm_coef p^f (f x).
+Lemma map_comm_coef p x : comm_coef p x comm_coef p^f (f x).

-Lemma rmorph_root p x : root p x root p^f (f x).
+Lemma rmorph_root p x : root p x root p^f (f x).

-Lemma rmorph_unity_root n z : n.-unity_root z n.-unity_root (f z).
+Lemma rmorph_unity_root n z : n.-unity_root z n.-unity_root (f z).

Section HornerMorph.
@@ -1613,29 +1640,29 @@ Hypothesis cfu : commr_rmorph f u.

-Lemma horner_morphC a : horner_morph cfu a%:P = f a.
+Lemma horner_morphC a : horner_morph cfu a%:P = f a.

-Lemma horner_morphX : horner_morph cfu 'X = u.
+Lemma horner_morphX : horner_morph cfu 'X = u.

-Fact horner_is_lrmorphism : lrmorphism_for (f \; *%R) (horner_morph cfu).
+Fact horner_is_lrmorphism : lrmorphism_for (f \; *%R) (horner_morph cfu).
Canonical horner_additive := Additive horner_is_lrmorphism.
Canonical horner_rmorphism := RMorphism horner_is_lrmorphism.
Canonical horner_linear := AddLinear horner_is_lrmorphism.
-Canonical horner_lrmorphism := [lrmorphism of horner_morph cfu].
+Canonical horner_lrmorphism := [lrmorphism of horner_morph cfu].

End HornerMorph.

-Lemma deriv_map p : p^f^` = (p^`)^f.
+Lemma deriv_map p : p^f^` = (p^`)^f.

-Lemma derivn_map p n : p^f^`(n) = (p^`(n))^f.
+Lemma derivn_map p n : p^f^`(n) = (p^`(n))^f.

-Lemma nderivn_map p n : p^f^`N(n) = (p^`N(n))^f.
+Lemma nderivn_map p n : p^f^`N(n) = (p^`N(n))^f.

End MapPoly.
@@ -1651,56 +1678,60 @@ Section MorphPoly.

-Variable (aR rR : ringType) (pf : {rmorphism {poly aR} rR}).
+Variable (aR rR : ringType) (pf : {rmorphism {poly aR} rR}).

-Lemma poly_morphX_comm : commr_rmorph (pf \o polyC) (pf 'X).
+Lemma poly_morphX_comm : commr_rmorph (pf \o polyC) (pf 'X).

-Lemma poly_initial : pf =1 horner_morph poly_morphX_comm.
+Lemma poly_initial : pf =1 horner_morph poly_morphX_comm.

End MorphPoly.

-Notation "p ^:P" := (map_poly polyC p) : ring_scope.
+Notation "p ^:P" := (map_poly polyC p) : ring_scope.

Section PolyCompose.

Variable R : ringType.
-Implicit Types p q : {poly R}.
+Implicit Types p q : {poly R}.

-Definition comp_poly q p := p^:P.[q].
+Definition comp_poly q p := p^:P.[q].


-Lemma size_map_polyC p : size p^:P = size p.
+Lemma size_map_polyC p : size p^:P = size p.

-Lemma map_polyC_eq0 p : (p^:P == 0) = (p == 0).
+Lemma map_polyC_eq0 p : (p^:P == 0) = (p == 0).

-Lemma root_polyC p x : root p^:P x%:P = root p x.
+Lemma root_polyC p x : root p^:P x%:P = root p x.

-Lemma comp_polyE p q : p \Po q = \sum_(i < size p) p`_i *: q^+i.
+Lemma comp_polyE p q : p \Po q = \sum_(i < size p) p`_i *: q^+i.

-Lemma polyOver_comp S (ringS : semiringPred S) (kS : keyed_pred ringS) :
-  {in polyOver kS &, p q, p \Po q \in polyOver kS}.
+Lemma coef_comp_poly p q n :
+  (p \Po q)`_n = \sum_(i < size p) p`_i × (q ^+ i)`_n.
+ +
+Lemma polyOver_comp S (ringS : semiringPred S) (kS : keyed_pred ringS) :
+  {in polyOver kS &, p q, p \Po q \in polyOver kS}.

-Lemma comp_polyCr p c : p \Po c%:P = p.[c]%:P.
+Lemma comp_polyCr p c : p \Po c%:P = p.[c]%:P.

-Lemma comp_poly0r p : p \Po 0 = (p`_0)%:P.
+Lemma comp_poly0r p : p \Po 0 = (p`_0)%:P.

-Lemma comp_polyC c p : c%:P \Po p = c%:P.
+Lemma comp_polyC c p : c%:P \Po p = c%:P.

Fact comp_poly_is_linear p : linear (comp_poly p).
@@ -1708,116 +1739,122 @@ Canonical comp_poly_linear p := Linear (comp_poly_is_linear p).

-Lemma comp_poly0 p : 0 \Po p = 0.
+Lemma comp_poly0 p : 0 \Po p = 0.

-Lemma comp_polyD p q r : (p + q) \Po r = (p \Po r) + (q \Po r).
+Lemma comp_polyD p q r : (p + q) \Po r = (p \Po r) + (q \Po r).

-Lemma comp_polyB p q r : (p - q) \Po r = (p \Po r) - (q \Po r).
+Lemma comp_polyB p q r : (p - q) \Po r = (p \Po r) - (q \Po r).

-Lemma comp_polyZ c p q : (c *: p) \Po q = c *: (p \Po q).
+Lemma comp_polyZ c p q : (c *: p) \Po q = c *: (p \Po q).

-Lemma comp_polyXr p : p \Po 'X = p.
+Lemma comp_polyXr p : p \Po 'X = p.

-Lemma comp_polyX p : 'X \Po p = p.
+Lemma comp_polyX p : 'X \Po p = p.

-Lemma comp_poly_MXaddC c p q : (p × 'X + c%:P) \Po q = (p \Po q) × q + c%:P.
+Lemma comp_poly_MXaddC c p q : (p × 'X + c%:P) \Po q = (p \Po q) × q + c%:P.

-Lemma comp_polyXaddC_K p z : (p \Po ('X + z%:P)) \Po ('X - z%:P) = p.
+Lemma comp_polyXaddC_K p z : (p \Po ('X + z%:P)) \Po ('X - z%:P) = p.

Lemma size_comp_poly_leq p q :
-  size (p \Po q) ((size p).-1 × (size q).-1).+1.
+  size (p \Po q) ((size p).-1 × (size q).-1).+1.

End PolyCompose.

-Notation "p \Po q" := (comp_poly q p) : ring_scope.
+Notation "p \Po q" := (comp_poly q p) : ring_scope.

-Lemma map_comp_poly (aR rR : ringType) (f : {rmorphism aR rR}) p q :
-  map_poly f (p \Po q) = map_poly f p \Po map_poly f q.
+Lemma map_comp_poly (aR rR : ringType) (f : {rmorphism aR rR}) p q :
+  map_poly f (p \Po q) = map_poly f p \Po map_poly f q.

Section PolynomialComRing.

Variable R : comRingType.
-Implicit Types p q : {poly R}.
+Implicit Types p q : {poly R}.

-Fact poly_mul_comm p q : p × q = q × p.
+Fact poly_mul_comm p q : p × q = q × p.

-Canonical poly_comRingType := Eval hnf in ComRingType {poly R} poly_mul_comm.
+Canonical poly_comRingType := Eval hnf in ComRingType {poly R} poly_mul_comm.
Canonical polynomial_comRingType :=
  Eval hnf in ComRingType (polynomial R) poly_mul_comm.
-Canonical poly_algType := Eval hnf in CommAlgType R {poly R}.
+Canonical poly_algType := Eval hnf in CommAlgType R {poly R}.
Canonical polynomial_algType :=
-  Eval hnf in [algType R of polynomial R for poly_algType].
+  Eval hnf in [algType R of polynomial R for poly_algType].

-Lemma hornerM p q x : (p × q).[x] = p.[x] × q.[x].
+Lemma hornerM p q x : (p × q).[x] = p.[x] × q.[x].

-Lemma horner_exp p x n : (p ^+ n).[x] = p.[x] ^+ n.
+Lemma horner_exp p x n : (p ^+ n).[x] = p.[x] ^+ n.

-Lemma horner_prod I r (P : pred I) (F : I {poly R}) x :
-  (\prod_(i <- r | P i) F i).[x] = \prod_(i <- r | P i) (F i).[x].
+Lemma horner_prod I r (P : pred I) (F : I {poly R}) x :
+  (\prod_(i <- r | P i) F i).[x] = \prod_(i <- r | P i) (F i).[x].

Definition hornerE :=
-  (hornerD, hornerN, hornerX, hornerC, horner_cons,
-   simp, hornerCM, hornerZ, hornerM).
+  (hornerD, hornerN, hornerX, hornerC, horner_cons,
+   simp, hornerCM, hornerZ, hornerM).

-Definition horner_eval (x : R) := horner^~ x.
-Lemma horner_evalE x p : horner_eval x p = p.[x].
+Definition horner_eval (x : R) := horner^~ x.
+Lemma horner_evalE x p : horner_eval x p = p.[x].

-Fact horner_eval_is_lrmorphism x : lrmorphism_for *%R (horner_eval x).
+Fact horner_eval_is_lrmorphism x : lrmorphism_for *%R (horner_eval x).
Canonical horner_eval_additive x := Additive (horner_eval_is_lrmorphism x).
Canonical horner_eval_rmorphism x := RMorphism (horner_eval_is_lrmorphism x).
Canonical horner_eval_linear x := AddLinear (horner_eval_is_lrmorphism x).
-Canonical horner_eval_lrmorphism x := [lrmorphism of horner_eval x].
+Canonical horner_eval_lrmorphism x := [lrmorphism of horner_eval x].

Fact comp_poly_multiplicative q : multiplicative (comp_poly q).
Canonical comp_poly_rmorphism q := AddRMorphism (comp_poly_multiplicative q).
-Canonical comp_poly_lrmorphism q := [lrmorphism of comp_poly q].
+Canonical comp_poly_lrmorphism q := [lrmorphism of comp_poly q].

-Lemma comp_polyM p q r : (p × q) \Po r = (p \Po r) × (q \Po r).
+Lemma comp_polyM p q r : (p × q) \Po r = (p \Po r) × (q \Po r).

-Lemma comp_polyA p q r : p \Po (q \Po r) = (p \Po q) \Po r.
+Lemma comp_polyA p q r : p \Po (q \Po r) = (p \Po q) \Po r.

-Lemma horner_comp p q x : (p \Po q).[x] = p.[q.[x]].
+Lemma horner_comp p q x : (p \Po q).[x] = p.[q.[x]].

-Lemma root_comp p q x : root (p \Po q) x = root p (q.[x]).
+Lemma root_comp p q x : root (p \Po q) x = root p (q.[x]).

-Lemma deriv_comp p q : (p \Po q) ^` = (p ^` \Po q) × q^`.
+Lemma deriv_comp p q : (p \Po q) ^` = (p ^` \Po q) × q^`.

-Lemma deriv_exp p n : (p ^+ n)^` = p^` × p ^+ n.-1 *+ n.
+Lemma deriv_exp p n : (p ^+ n)^` = p^` × p ^+ n.-1 *+ n.

-Definition derivCE := (derivE, deriv_exp).
+Definition derivCE := (derivE, deriv_exp).

End PolynomialComRing.
+
+Canonical polynomial_countComRingType (R : countComRingType) :=
+  [countComRingType of polynomial R].
+Canonical poly_countComRingType (R : countComRingType) :=
+  [countComRingType of {poly R}].
+
Section PolynomialIdomain.
@@ -1831,29 +1868,29 @@ Variable R : idomainType.

-Implicit Types (a b x y : R) (p q r m : {poly R}).
+Implicit Types (a b x y : R) (p q r m : {poly R}).

-Lemma size_mul p q : p != 0 q != 0 size (p × q) = (size p + size q).-1.
+Lemma size_mul p q : p != 0 q != 0 size (p × q) = (size p + size q).-1.

-Fact poly_idomainAxiom p q : p × q = 0 (p == 0) || (q == 0).
+Fact poly_idomainAxiom p q : p × q = 0 (p == 0) || (q == 0).

-Definition poly_unit : pred {poly R} :=
-  fun p(size p == 1%N) && (p`_0 \in GRing.unit).
+Definition poly_unit : pred {poly R} :=
+  fun p(size p == 1%N) && (p`_0 \in GRing.unit).

-Definition poly_inv p := if p \in poly_unit then (p`_0)^-1%:P else p.
+Definition poly_inv p := if p \in poly_unit then (p`_0)^-1%:P else p.

-Fact poly_mulVp : {in poly_unit, left_inverse 1 poly_inv *%R}.
+Fact poly_mulVp : {in poly_unit, left_inverse 1 poly_inv *%R}.

-Fact poly_intro_unit p q : q × p = 1 p \in poly_unit.
+Fact poly_intro_unit p q : q × p = 1 p \in poly_unit.

-Fact poly_inv_out : {in [predC poly_unit], poly_inv =1 id}.
+Fact poly_inv_out : {in [predC poly_unit], poly_inv =1 id}.

Definition poly_comUnitMixin :=
@@ -1861,130 +1898,170 @@
Canonical poly_unitRingType :=
-  Eval hnf in UnitRingType {poly R} poly_comUnitMixin.
+  Eval hnf in UnitRingType {poly R} poly_comUnitMixin.
Canonical polynomial_unitRingType :=
-  Eval hnf in [unitRingType of polynomial R for poly_unitRingType].
+  Eval hnf in [unitRingType of polynomial R for poly_unitRingType].

-Canonical poly_unitAlgType := Eval hnf in [unitAlgType R of {poly R}].
-Canonical polynomial_unitAlgType := Eval hnf in [unitAlgType R of polynomial R].
+Canonical poly_unitAlgType := Eval hnf in [unitAlgType R of {poly R}].
+Canonical polynomial_unitAlgType := Eval hnf in [unitAlgType R of polynomial R].

-Canonical poly_comUnitRingType := Eval hnf in [comUnitRingType of {poly R}].
+Canonical poly_comUnitRingType := Eval hnf in [comUnitRingType of {poly R}].
Canonical polynomial_comUnitRingType :=
-  Eval hnf in [comUnitRingType of polynomial R].
+  Eval hnf in [comUnitRingType of polynomial R].

Canonical poly_idomainType :=
-  Eval hnf in IdomainType {poly R} poly_idomainAxiom.
+  Eval hnf in IdomainType {poly R} poly_idomainAxiom.
Canonical polynomial_idomainType :=
-  Eval hnf in [idomainType of polynomial R for poly_idomainType].
+  Eval hnf in [idomainType of polynomial R for poly_idomainType].

Lemma poly_unitE p :
-  (p \in GRing.unit) = (size p == 1%N) && (p`_0 \in GRing.unit).
+  (p \in GRing.unit) = (size p == 1%N) && (p`_0 \in GRing.unit).

-Lemma poly_invE p : p ^-1 = if p \in GRing.unit then (p`_0)^-1%:P else p.
+Lemma poly_invE p : p ^-1 = if p \in GRing.unit then (p`_0)^-1%:P else p.

-Lemma polyC_inv c : c%:P^-1 = (c^-1)%:P.
+Lemma polyC_inv c : c%:P^-1 = (c^-1)%:P.

-Lemma rootM p q x : root (p × q) x = root p x || root q x.
+Lemma rootM p q x : root (p × q) x = root p x || root q x.

-Lemma rootZ x a p : a != 0 root (a *: p) x = root p x.
+Lemma rootZ x a p : a != 0 root (a *: p) x = root p x.

-Lemma size_scale a p : a != 0 size (a *: p) = size p.
+Lemma size_scale a p : a != 0 size (a *: p) = size p.

-Lemma size_Cmul a p : a != 0 size (a%:P × p) = size p.
+Lemma size_Cmul a p : a != 0 size (a%:P × p) = size p.

-Lemma lead_coefM p q : lead_coef (p × q) = lead_coef p × lead_coef q.
+Lemma lead_coefM p q : lead_coef (p × q) = lead_coef p × lead_coef q.

-Lemma lead_coefZ a p : lead_coef (a *: p) = a × lead_coef p.
+Lemma lead_coefZ a p : lead_coef (a *: p) = a × lead_coef p.

-Lemma scale_poly_eq0 a p : (a *: p == 0) = (a == 0) || (p == 0).
+Lemma scale_poly_eq0 a p : (a *: p == 0) = (a == 0) || (p == 0).

-Lemma size_prod (I : finType) (P : pred I) (F : I {poly R}) :
-    ( i, P i F i != 0)
-  size (\prod_(i | P i) F i) = ((\sum_(i | P i) size (F i)).+1 - #|P|)%N.
+Lemma size_prod (I : finType) (P : pred I) (F : I {poly R}) :
+    ( i, P i F i != 0)
+  size (\prod_(i | P i) F i) = ((\sum_(i | P i) size (F i)).+1 - #|P|)%N.
+ +
+Lemma size_prod_seq (I : eqType) (s : seq I) (F : I {poly R}) :
+    ( i, i \in s F i != 0)
+  size (\prod_(i <- s) F i) = ((\sum_(i <- s) size (F i)).+1 - size s)%N.
+ +
+Lemma size_mul_eq1 p q :
+  (size (p × q) == 1%N) = ((size p == 1%N) && (size q == 1%N)).
+ +
+Lemma size_prod_seq_eq1 (I : eqType) (s : seq I) (P : pred I) (F : I {poly R}) :
+  reflect ( i, P i && (i \in s) size (F i) = 1%N)
+          (size (\prod_(i <- s | P i) F i) == 1%N).
+ +
+Lemma size_prod_eq1 (I : finType) (P : pred I) (F : I {poly R}) :
+  reflect ( i, P i size (F i) = 1%N)
+          (size (\prod_(i | P i) F i) == 1%N).

-Lemma size_exp p n : (size (p ^+ n)).-1 = ((size p).-1 × n)%N.
+Lemma size_exp p n : (size (p ^+ n)).-1 = ((size p).-1 × n)%N.

-Lemma lead_coef_exp p n : lead_coef (p ^+ n) = lead_coef p ^+ n.
+Lemma lead_coef_exp p n : lead_coef (p ^+ n) = lead_coef p ^+ n.

Lemma root_prod_XsubC rs x :
-  root (\prod_(a <- rs) ('X - a%:P)) x = (x \in rs).
+  root (\prod_(a <- rs) ('X - a%:P)) x = (x \in rs).

-Lemma root_exp_XsubC n a x : root (('X - a%:P) ^+ n.+1) x = (x == a).
+Lemma root_exp_XsubC n a x : root (('X - a%:P) ^+ n.+1) x = (x == a).

Lemma size_comp_poly p q :
-  (size (p \Po q)).-1 = ((size p).-1 × (size q).-1)%N.
+  (size (p \Po q)).-1 = ((size p).-1 × (size q).-1)%N.

-Lemma size_comp_poly2 p q : size q = 2 size (p \Po q) = size p.
+Lemma lead_coef_comp p q : size q > 1
+  lead_coef (p \Po q) = (lead_coef p) × lead_coef q ^+ (size p).-1.

-Lemma comp_poly2_eq0 p q : size q = 2 (p \Po q == 0) = (p == 0).
- +Lemma comp_poly_eq0 p q : size q > 1 (p \Po q == 0) = (p == 0).
+
-Lemma lead_coef_comp p q :
-  size q > 1 lead_coef (p \Po q) = lead_coef p × lead_coef q ^+ (size p).-1.
+Lemma size_comp_poly2 p q : size q = 2 size (p \Po q) = size p.
+
+Lemma comp_poly2_eq0 p q : size q = 2 (p \Po q == 0) = (p == 0).
+
Theorem max_poly_roots p rs :
-  p != 0 all (root p) rs uniq rs size rs < size p.
+  p != 0 all (root p) rs uniq rs size rs < size p.
+
+Lemma roots_geq_poly_eq0 p (rs : seq R) : all (root p) rs uniq rs
+  (size rs size p)%N p = 0.
+
End PolynomialIdomain.
+
+Canonical polynomial_countUnitRingType (R : countIdomainType) :=
+  [countUnitRingType of polynomial R].
+Canonical poly_countUnitRingType (R : countIdomainType) :=
+  [countUnitRingType of {poly R}].
+Canonical polynomial_countComUnitRingType (R : countIdomainType) :=
+  [countComUnitRingType of polynomial R].
+Canonical poly_countComUnitRingType (R : countIdomainType) :=
+  [countComUnitRingType of {poly R}].
+Canonical polynomial_countIdomainType (R : countIdomainType) :=
+  [countIdomainType of polynomial R].
+Canonical poly_countIdomainType (R : countIdomainType) :=
+  [countIdomainType of {poly R}].
+
Section MapFieldPoly.

-Variables (F : fieldType) (R : ringType) (f : {rmorphism F R}).
+Variables (F : fieldType) (R : ringType) (f : {rmorphism F R}).


-Lemma size_map_poly p : size p^f = size p.
+Lemma size_map_poly p : size p^f = size p.

-Lemma lead_coef_map p : lead_coef p^f = f (lead_coef p).
+Lemma lead_coef_map p : lead_coef p^f = f (lead_coef p).

-Lemma map_poly_eq0 p : (p^f == 0) = (p == 0).
+Lemma map_poly_eq0 p : (p^f == 0) = (p == 0).

-Lemma map_poly_inj : injective (map_poly f).
+Lemma map_poly_inj : injective (map_poly f).

-Lemma map_monic p : (p^f \is monic) = (p \is monic).
+Lemma map_monic p : (p^f \is monic) = (p \is monic).

-Lemma map_poly_com p x : comm_poly p^f (f x).
+Lemma map_poly_com p x : comm_poly p^f (f x).

-Lemma fmorph_root p x : root p^f (f x) = root p x.
+Lemma fmorph_root p x : root p^f (f x) = root p x.

-Lemma fmorph_unity_root n z : n.-unity_root (f z) = n.-unity_root z.
+Lemma fmorph_unity_root n z : n.-unity_root (f z) = n.-unity_root z.

Lemma fmorph_primitive_root n z :
-  n.-primitive_root (f z) = n.-primitive_root z.
+  n.-primitive_root (f z) = n.-primitive_root z.

End MapFieldPoly.
@@ -1996,28 +2073,28 @@
Variable R : unitRingType.
-Implicit Types (x y : R) (rs : seq R) (p : {poly R}).
+Implicit Types (x y : R) (rs : seq R) (p : {poly R}).

-Definition diff_roots (x y : R) := (x × y == y × x) && (y - x \in GRing.unit).
+Definition diff_roots (x y : R) := (x × y == y × x) && (y - x \in GRing.unit).

Fixpoint uniq_roots rs :=
-  if rs is x :: rs' then all (diff_roots x) rs' && uniq_roots rs' else true.
+  if rs is x :: rs' then all (diff_roots x) rs' && uniq_roots rs' else true.

Lemma uniq_roots_prod_XsubC p rs :
-    all (root p) rs uniq_roots rs
-   q, p = q × \prod_(z <- rs) ('X - z%:P).
+    all (root p) rs uniq_roots rs
+   q, p = q × \prod_(z <- rs) ('X - z%:P).

Theorem max_ring_poly_roots p rs :
-  p != 0 all (root p) rs uniq_roots rs size rs < size p.
+  p != 0 all (root p) rs uniq_roots rs size rs < size p.

Lemma all_roots_prod_XsubC p rs :
-    size p = (size rs).+1 all (root p) rs uniq_roots rs
-  p = lead_coef p *: \prod_(z <- rs) ('X - z%:P).
+    size p = (size rs).+1 all (root p) rs uniq_roots rs
+  p = lead_coef p *: \prod_(z <- rs) ('X - z%:P).

End MaxRoots.
@@ -2027,28 +2104,28 @@
Variable F : fieldType.
-Implicit Types (p : {poly F}) (rs : seq F).
+Implicit Types (p : {poly F}) (rs : seq F).

-Lemma poly2_root p : size p = 2 {r | root p r}.
+Lemma poly2_root p : size p = 2 {r | root p r}.

-Lemma uniq_rootsE rs : uniq_roots rs = uniq rs.
+Lemma uniq_rootsE rs : uniq_roots rs = uniq rs.

Section UnityRoots.

-Variable n : nat.
+Variable n : nat.

Lemma max_unity_roots rs :
-  n > 0 all n.-unity_root rs uniq rs size rs n.
+  n > 0 all n.-unity_root rs uniq rs size rs n.

Lemma mem_unity_roots rs :
-    n > 0 all n.-unity_root rs uniq rs size rs = n
-  n.-unity_root =i rs.
+    n > 0 all n.-unity_root rs uniq rs size rs = n
+  n.-unity_root =i rs.

@@ -2060,16 +2137,16 @@
Variable z : F.
-Hypothesis prim_z : n.-primitive_root z.
+Hypothesis prim_z : n.-primitive_root z.

-Let zn := [seq z ^+ i | i <- index_iota 0 n].
+Let zn := [seq z ^+ i | i <- index_iota 0 n].

-Lemma factor_Xn_sub_1 : \prod_(0 i < n) ('X - (z ^+ i)%:P) = 'X^n - 1.
+Lemma factor_Xn_sub_1 : \prod_(0 i < n) ('X - (z ^+ i)%:P) = 'X^n - 1.

-Lemma prim_rootP x : x ^+ n = 1 {i : 'I_n | x = z ^+ i}.
+Lemma prim_rootP x : x ^+ n = 1 {i : 'I_n | x = z ^+ i}.

End UnityRoots.
@@ -2081,13 +2158,13 @@ Section MapPolyRoots.

-Variables (F : fieldType) (R : unitRingType) (f : {rmorphism F R}).
+Variables (F : fieldType) (R : unitRingType) (f : {rmorphism F R}).

-Lemma map_diff_roots x y : diff_roots (f x) (f y) = (x != y).
+Lemma map_diff_roots x y : diff_roots (f x) (f y) = (x != y).

-Lemma map_uniq_roots s : uniq_roots (map f s) = uniq s.
+Lemma map_uniq_roots s : uniq_roots (map f s) = uniq s.

End MapPolyRoots.
@@ -2103,17 +2180,17 @@
Variable F : fieldType.
-Implicit Types u v : {rmorphism F F}.
+Implicit Types u v : {rmorphism F F}.

Lemma aut_prim_rootP u z n :
-  n.-primitive_root z {k | coprime k n & u z = z ^+ k}.
+  n.-primitive_root z {k | coprime k n & u z = z ^+ k}.

-Lemma aut_unity_rootP u z n : n > 0 z ^+ n = 1 {k | u z = z ^+ k}.
+Lemma aut_unity_rootP u z n : n > 0 z ^+ n = 1 {k | u z = z ^+ k}.

-Lemma aut_unity_rootC u v z n : n > 0 z ^+ n = 1 u (v z) = v (u z).
+Lemma aut_unity_rootC u v z n : n > 0 z ^+ n = 1 u (v z) = v (u z).

End AutPolyRoot.
@@ -2122,8 +2199,8 @@ Module UnityRootTheory.

-Notation "n .-unity_root" := (root_of_unity n) : unity_root_scope.
-Notation "n .-primitive_root" := (primitive_root_of_unity n) : unity_root_scope.
+Notation "n .-unity_root" := (root_of_unity n) : unity_root_scope.
+Notation "n .-primitive_root" := (primitive_root_of_unity n) : unity_root_scope.
Open Scope unity_root_scope.

@@ -2156,9 +2233,9 @@ Variable F : decFieldType.

-Lemma dec_factor_theorem (p : {poly F}) :
-  {s : seq F & {q : {poly F} | p = q × \prod_(x <- s) ('X - x%:P)
-                              (q != 0 x, ~~ root q x)}}.
+Lemma dec_factor_theorem (p : {poly F}) :
+  {s : seq F & {q : {poly F} | p = q × \prod_(x <- s) ('X - x%:P)
+                              (q != 0 x, ~~ root q x)}}.

End DecField.
@@ -2170,13 +2247,13 @@
Variable F : fieldType.
Hypothesis closedF : GRing.ClosedField.axiom F.
-Implicit Type p : {poly F}.
+Implicit Type p : {poly F}.

-Lemma closed_rootP p : reflect ( x, root p x) (size p != 1%N).
+Lemma closed_rootP p : reflect ( x, root p x) (size p != 1%N).

-Lemma closed_nonrootP p : reflect ( x, ~~ root p x) (p != 0).
+Lemma closed_nonrootP p : reflect ( x, ~~ root p x) (p != 0).

End UseAxiom.
@@ -2187,20 +2264,20 @@
Variable F : closedFieldType.
-Implicit Type p : {poly F}.
+Implicit Type p : {poly F}.

Let closedF := @solve_monicpoly F.

-Lemma closed_rootP p : reflect ( x, root p x) (size p != 1%N).
+Lemma closed_rootP p : reflect ( x, root p x) (size p != 1%N).

-Lemma closed_nonrootP p : reflect ( x, ~~ root p x) (p != 0).
+Lemma closed_nonrootP p : reflect ( x, ~~ root p x) (p != 0).

Lemma closed_field_poly_normal p :
-  {r : seq F | p = lead_coef p *: \prod_(z <- r) ('X - z%:P)}.
+  {r : seq F | p = lead_coef p *: \prod_(z <- r) ('X - z%:P)}.

End ClosedField.
-- cgit v1.2.3