From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.algebra.mxpoly.html | 736 ------------------------------ 1 file changed, 736 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.algebra.mxpoly.html (limited to 'docs/htmldoc/mathcomp.algebra.mxpoly.html') diff --git a/docs/htmldoc/mathcomp.algebra.mxpoly.html b/docs/htmldoc/mathcomp.algebra.mxpoly.html deleted file mode 100644 index 81cbeb0..0000000 --- a/docs/htmldoc/mathcomp.algebra.mxpoly.html +++ /dev/null @@ -1,736 +0,0 @@ - - - - - -mathcomp.algebra.mxpoly - - - - -
- - - -
- -

Library mathcomp.algebra.mxpoly

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-
- -
- This file provides basic support for formal computation with matrices, - mainly results combining matrices and univariate polynomials, such as the - Cayley-Hamilton theorem; it also contains an extension of the first order - representation of algebra introduced in ssralg (GRing.term/formula). - rVpoly v == the little-endian decoding of the row vector v as a - polynomial p = \sum_i (v 0 i)%:P * 'X^i. - poly_rV p == the partial inverse to rVpoly, for polynomials of degree - less than d to 'rV_d (d is inferred from the context). - Sylvester_mx p q == the Sylvester matrix of p and q. - resultant p q == the resultant of p and q, i.e., \det (Sylvester_mx p q). - horner_mx A == the morphism from {poly R} to 'M_n (n of the form n'.+1) - mapping a (scalar) polynomial p to the value of its - scalar matrix interpretation at A (this is an instance of - the generic horner_morph construct defined in poly). - powers_mx A d == the d x (n ^ 2) matrix whose rows are the mxvec encodings - of the first d powers of A (n of the form n'.+1). Thus, - vec_mx (v *m powers_mx A d) = horner_mx A (rVpoly v). - char_poly A == the characteristic polynomial of A. - char_poly_mx A == a matrix whose determinant is char_poly A. - companionmx p == a matrix whose char_poly is p - mxminpoly A == the minimal polynomial of A, i.e., the smallest monic - polynomial that annihilates A (A must be nontrivial). - degree_mxminpoly A == the (positive) degree of mxminpoly A. - mx_inv_horner A == the inverse of horner_mx A for polynomials of degree - smaller than degree_mxminpoly A. - integralOver RtoK u <-> u is in the integral closure of the image of R - under RtoK : R -> K, i.e. u is a root of the image of a - monic polynomial in R. - algebraicOver FtoE u <-> u : E is algebraic over E; it is a root of the - image of a nonzero polynomial under FtoE; as F must be a - fieldType, this is equivalent to integralOver FtoE u. - integralRange RtoK <-> the integral closure of the image of R contains - all of K (:= forall u, integralOver RtoK u). - This toolkit for building formal matrix expressions is packaged in the - MatrixFormula submodule, and comprises the following: - eval_mx e == GRing.eval lifted to matrices (:= map_mx (GRing.eval e)). - mx_term A == GRing.Const lifted to matrices. - mulmx_term A B == the formal product of two matrices of terms. - mxrank_form m A == a GRing.formula asserting that the interpretation of - the term matrix A has rank m. - submx_form A B == a GRing.formula asserting that the row space of the - interpretation of the term matrix A is included in the - row space of the interpretation of B. - seq_of_rV v == the seq corresponding to a row vector. - row_env e == the flattening of a tensored environment e : seq 'rV_d. - row_var F d k == the term vector of width d such that for e : seq 'rV[F]_d - we have eval e 'X_k = eval_mx (row_env e) (row_var d k). -
-
- -
-Set Implicit Arguments.
- -
-Import GRing.Theory.
-Import Monoid.Theory.
- -
-Local Open Scope ring_scope.
- -
-Import Pdiv.Idomain.
-
- -
- Row vector <-> bounded degree polynomial bijection -
-
-Section RowPoly.
- -
-Variables (R : ringType) (d : nat).
-Implicit Types u v : 'rV[R]_d.
-Implicit Types p q : {poly R}.
- -
-Definition rVpoly v := \poly_(k < d) (if insub k is Some i then v 0 i else 0).
-Definition poly_rV p := \row_(i < d) p`_i.
- -
-Lemma coef_rVpoly v k : (rVpoly v)`_k = if insub k is Some i then v 0 i else 0.
- -
-Lemma coef_rVpoly_ord v (i : 'I_d) : (rVpoly v)`_i = v 0 i.
- -
-Lemma rVpoly_delta i : rVpoly (delta_mx 0 i) = 'X^i.
- -
-Lemma rVpolyK : cancel rVpoly poly_rV.
- -
-Lemma poly_rV_K p : size p d rVpoly (poly_rV p) = p.
- -
-Lemma poly_rV_is_linear : linear poly_rV.
- Canonical poly_rV_additive := Additive poly_rV_is_linear.
-Canonical poly_rV_linear := Linear poly_rV_is_linear.
- -
-Lemma rVpoly_is_linear : linear rVpoly.
-Canonical rVpoly_additive := Additive rVpoly_is_linear.
-Canonical rVpoly_linear := Linear rVpoly_is_linear.
- -
-End RowPoly.
- -
- -
-Section Resultant.
- -
-Variables (R : ringType) (p q : {poly R}).
- -
-Let dS := ((size q).-1 + (size p).-1)%N.
- -
-Definition Sylvester_mx : 'M[R]_dS := col_mx (band p) (band q).
- -
-Lemma Sylvester_mxE (i j : 'I_dS) :
-  let S_ r k := r`_(j - k) *+ (k j) in
-  Sylvester_mx i j = match split i with inl kS_ p k | inr kS_ q k end.
- -
-Definition resultant := \det Sylvester_mx.
- -
-End Resultant.
- -
- -
-Lemma resultant_in_ideal (R : comRingType) (p q : {poly R}) :
-    size p > 1 size q > 1
-  {uv : {poly R} × {poly R} | size uv.1 < size q size uv.2 < size p
-  & (resultant p q)%:P = uv.1 × p + uv.2 × q}.
- -
-Lemma resultant_eq0 (R : idomainType) (p q : {poly R}) :
-  (resultant p q == 0) = (size (gcdp p q) > 1).
- -
-Section HornerMx.
- -
-Variables (R : comRingType) (n' : nat).
-Variable A : 'M[R]_n.
-Implicit Types p q : {poly R}.
- -
-Definition horner_mx := horner_morph (fun ascalar_mx_comm a A).
-Canonical horner_mx_additive := [additive of horner_mx].
-Canonical horner_mx_rmorphism := [rmorphism of horner_mx].
- -
-Lemma horner_mx_C a : horner_mx a%:P = a%:M.
- -
-Lemma horner_mx_X : horner_mx 'X = A.
- -
-Lemma horner_mxZ : scalable horner_mx.
- -
-Canonical horner_mx_linear := AddLinear horner_mxZ.
-Canonical horner_mx_lrmorphism := [lrmorphism of horner_mx].
- -
-Definition powers_mx d := \matrix_(i < d) mxvec (A ^+ i).
- -
-Lemma horner_rVpoly m (u : 'rV_m) :
-  horner_mx (rVpoly u) = vec_mx (u ×m powers_mx m).
- -
-End HornerMx.
- -
- -
-Section CharPoly.
- -
-Variables (R : ringType) (n : nat) (A : 'M[R]_n).
-Implicit Types p q : {poly R}.
- -
-Definition char_poly_mx := 'X%:M - map_mx (@polyC R) A.
-Definition char_poly := \det char_poly_mx.
- -
-Let diagA := [seq A i i | i : 'I_n].
-Let size_diagA : size diagA = n.
- -
-Let split_diagA :
-  exists2 q, \prod_(x <- diagA) ('X - x%:P) + q = char_poly & size q n.-1.
- -
-Lemma size_char_poly : size char_poly = n.+1.
- -
-Lemma char_poly_monic : char_poly \is monic.
- -
-Lemma char_poly_trace : n > 0 char_poly`_n.-1 = - \tr A.
- -
-Lemma char_poly_det : char_poly`_0 = (- 1) ^+ n × \det A.
- -
-End CharPoly.
- -
- -
-Lemma mx_poly_ring_isom (R : ringType) n' (n := n'.+1) :
-   phi : {rmorphism 'M[{poly R}]_n {poly 'M[R]_n}},
-  [/\ bijective phi,
-       p, phi p%:M = map_poly scalar_mx p,
-       A, phi (map_mx polyC A) = A%:P
-    & A i j k, (phi A)`_k i j = (A i j)`_k].
- -
-Theorem Cayley_Hamilton (R : comRingType) n' (A : 'M[R]_n'.+1) :
-  horner_mx A (char_poly A) = 0.
- -
-Lemma eigenvalue_root_char (F : fieldType) n (A : 'M[F]_n) a :
-  eigenvalue A a = root (char_poly A) a.
- -
-Definition companionmx {R : ringType} (p : seq R) (d := (size p).-1) :=
-  \matrix_(i < d, j < d)
-    if (i == d.-1 :> nat) then - p`_j else (i.+1 == j :> nat)%:R.
- -
-Lemma companionmxK {R : comRingType} (p : {poly R}) :
-   p \is monic char_poly (companionmx p) = p.
- -
-Lemma mulmx_delta_companion (R : ringType) (p : seq R)
-  (i: 'I_(size p).-1) (i_small : i.+1 < (size p).-1):
-  delta_mx 0 i ×m companionmx p = delta_mx 0 (Ordinal i_small) :> 'rV__.
- -
-Section MinPoly.
- -
-Variables (F : fieldType) (n' : nat).
-Variable A : 'M[F]_n.
-Implicit Types p q : {poly F}.
- -
-Fact degree_mxminpoly_proof : d, \rank (powers_mx A d.+1) d.
- Definition degree_mxminpoly := ex_minn degree_mxminpoly_proof.
- -
-Lemma mxminpoly_nonconstant : d > 0.
- -
-Lemma minpoly_mx1 : (1%:M \in Ad)%MS.
- -
-Lemma minpoly_mx_free : row_free Ad.
- -
-Lemma horner_mx_mem p : (horner_mx A p \in Ad)%MS.
- -
-Definition mx_inv_horner B := rVpoly (mxvec B ×m pinvmx Ad).
- -
-Lemma mx_inv_horner0 : mx_inv_horner 0 = 0.
- -
-Lemma mx_inv_hornerK B : (B \in Ad)%MS horner_mx A (mx_inv_horner B) = B.
- -
-Lemma minpoly_mxM B C : (B \in Ad C \in Ad B × C \in Ad)%MS.
- -
-Lemma minpoly_mx_ring : mxring Ad.
- -
-Definition mxminpoly := 'X^d - mx_inv_horner (A ^+ d).
- -
-Lemma size_mxminpoly : size p_A = d.+1.
- -
-Lemma mxminpoly_monic : p_A \is monic.
- -
-Lemma size_mod_mxminpoly p : size (p %% p_A) d.
- -
-Lemma mx_root_minpoly : horner_mx A p_A = 0.
- -
-Lemma horner_rVpolyK (u : 'rV_d) :
-  mx_inv_horner (horner_mx A (rVpoly u)) = rVpoly u.
- -
-Lemma horner_mxK p : mx_inv_horner (horner_mx A p) = p %% p_A.
- -
-Lemma mxminpoly_min p : horner_mx A p = 0 p_A %| p.
- -
-Lemma horner_rVpoly_inj : injective (horner_mx A \o rVpoly : 'rV_d 'M_n).
- -
-Lemma mxminpoly_linear_is_scalar : (d 1) = is_scalar_mx A.
- -
-Lemma mxminpoly_dvd_char : p_A %| char_poly A.
- -
-Lemma eigenvalue_root_min a : eigenvalue A a = root p_A a.
- -
-End MinPoly.
- -
- -
- -
-
- -
- Parametricity. -
-
-Section MapRingMatrix.
- -
-Variables (aR rR : ringType) (f : {rmorphism aR rR}).
-Variables (d n : nat) (A : 'M[aR]_n).
- -
-Lemma map_rVpoly (u : 'rV_d) : fp (rVpoly u) = rVpoly u^f.
- -
-Lemma map_poly_rV p : (poly_rV p)^f = poly_rV (fp p) :> 'rV_d.
- -
-Lemma map_char_poly_mx : map_mx fp (char_poly_mx A) = char_poly_mx A^f.
- -
-Lemma map_char_poly : fp (char_poly A) = char_poly A^f.
- -
-End MapRingMatrix.
- -
-Section MapResultant.
- -
-Lemma map_resultant (aR rR : ringType) (f : {rmorphism {poly aR} rR}) p q :
-    f (lead_coef p) != 0 f (lead_coef q) != 0
-  f (resultant p q)= resultant (map_poly f p) (map_poly f q).
- -
-End MapResultant.
- -
-Section MapComRing.
- -
-Variables (aR rR : comRingType) (f : {rmorphism aR rR}).
-Variables (n' : nat) (A : 'M[aR]_n'.+1).
- -
-Lemma map_powers_mx e : (powers_mx A e)^f = powers_mx A^f e.
- -
-Lemma map_horner_mx p : (horner_mx A p)^f = horner_mx A^f (fp p).
- -
-End MapComRing.
- -
-Section MapField.
- -
-Variables (aF rF : fieldType) (f : {rmorphism aF rF}).
-Variables (n' : nat) (A : 'M[aF]_n'.+1) (p : {poly aF}).
- -
-Lemma map_mx_companion (e := congr1 predn (size_map_poly _ _)) :
-  (companionmx p)^f = castmx (e, e) (companionmx (fp p)).
- -
-Lemma companion_map_poly (e := esym (congr1 predn (size_map_poly _ _))) :
-  companionmx (fp p) = castmx (e, e) (companionmx p)^f.
- -
-Lemma degree_mxminpoly_map : degree_mxminpoly A^f = degree_mxminpoly A.
- -
-Lemma mxminpoly_map : mxminpoly A^f = fp (mxminpoly A).
- -
-Lemma map_mx_inv_horner u : fp (mx_inv_horner A u) = mx_inv_horner A^f u^f.
- -
-End MapField.
- -
-Section IntegralOverRing.
- -
-Definition integralOver (R K : ringType) (RtoK : R K) (z : K) :=
-  exists2 p, p \is monic & root (map_poly RtoK p) z.
- -
-Definition integralRange R K RtoK := z, @integralOver R K RtoK z.
- -
-Variables (B R K : ringType) (BtoR : B R) (RtoK : {rmorphism R K}).
- -
-Lemma integral_rmorph x :
-  integralOver BtoR x integralOver (RtoK \o BtoR) (RtoK x).
- -
-Lemma integral_id x : integralOver RtoK (RtoK x).
- -
-Lemma integral_nat n : integralOver RtoK n%:R.
- -
-Lemma integral0 : integralOver RtoK 0.
- -
-Lemma integral1 : integralOver RtoK 1.
- -
-Lemma integral_poly (p : {poly K}) :
-  ( i, integralOver RtoK p`_i) {in p : seq K, integralRange RtoK}.
- -
-End IntegralOverRing.
- -
-Section IntegralOverComRing.
- -
-Variables (R K : comRingType) (RtoK : {rmorphism R K}).
- -
-Lemma integral_horner_root w (p q : {poly K}) :
-    p \is monic root p w
-    {in p : seq K, integralRange RtoK} {in q : seq K, integralRange RtoK}
-  integralOver RtoK q.[w].
- -
-Lemma integral_root_monic u p :
-    p \is monic root p u {in p : seq K, integralRange RtoK}
-  integralOver RtoK u.
- -
-Hint Resolve (integral0 RtoK) (integral1 RtoK) (@monicXsubC K) : core.
- -
-Let XsubC0 (u : K) : root ('X - u%:P) u.
-Let intR_XsubC u :
-  integralOver RtoK (- u) {in 'X - u%:P : seq K, integralRange RtoK}.
- -
-Lemma integral_opp u : integralOver RtoK u integralOver RtoK (- u).
- -
-Lemma integral_horner (p : {poly K}) u :
-    {in p : seq K, integralRange RtoK} integralOver RtoK u
-  integralOver RtoK p.[u].
- -
-Lemma integral_sub u v :
-  integralOver RtoK u integralOver RtoK v integralOver RtoK (u - v).
- -
-Lemma integral_add u v :
-  integralOver RtoK u integralOver RtoK v integralOver RtoK (u + v).
- -
-Lemma integral_mul u v :
-  integralOver RtoK u integralOver RtoK v integralOver RtoK (u × v).
- -
-End IntegralOverComRing.
- -
-Section IntegralOverField.
- -
-Variables (F E : fieldType) (FtoE : {rmorphism F E}).
- -
-Definition algebraicOver (fFtoE : F E) u :=
-  exists2 p, p != 0 & root (map_poly fFtoE p) u.
- -
-Notation mk_mon p := ((lead_coef p)^-1 *: p).
- -
-Lemma integral_algebraic u : algebraicOver FtoE u integralOver FtoE u.
- -
-Lemma algebraic_id a : algebraicOver FtoE (FtoE a).
- -
-Lemma algebraic0 : algebraicOver FtoE 0.
- -
-Lemma algebraic1 : algebraicOver FtoE 1.
- -
-Lemma algebraic_opp x : algebraicOver FtoE x algebraicOver FtoE (- x).
- -
-Lemma algebraic_add x y :
-  algebraicOver FtoE x algebraicOver FtoE y algebraicOver FtoE (x + y).
- -
-Lemma algebraic_sub x y :
-  algebraicOver FtoE x algebraicOver FtoE y algebraicOver FtoE (x - y).
- -
-Lemma algebraic_mul x y :
-  algebraicOver FtoE x algebraicOver FtoE y algebraicOver FtoE (x × y).
- -
-Lemma algebraic_inv u : algebraicOver FtoE u algebraicOver FtoE u^-1.
- -
-Lemma algebraic_div x y :
-  algebraicOver FtoE x algebraicOver FtoE y algebraicOver FtoE (x / y).
- -
-Lemma integral_inv x : integralOver FtoE x integralOver FtoE x^-1.
- -
-Lemma integral_div x y :
-  integralOver FtoE x integralOver FtoE y integralOver FtoE (x / y).
- -
-Lemma integral_root p u :
-    p != 0 root p u {in p : seq E, integralRange FtoE}
-  integralOver FtoE u.
- -
-End IntegralOverField.
- -
-
- -
- Lifting term, formula, envs and eval to matrices. Wlog, and for the sake - of simplicity, we only lift (tensor) envs to row vectors; we can always - use mxvec/vec_mx to store and retrieve matrices. - We don't provide definitions for addition, subtraction, scaling, etc, - because they have simple matrix expressions. -
-
-Module MatrixFormula.
- -
-Section MatrixFormula.
- -
-Variable F : fieldType.
- -
- -
-Definition eval_mx (e : seq F) := @map_mx term F (eval e).
- -
-Definition mx_term := @map_mx F term GRing.Const.
- -
-Lemma eval_mx_term e m n (A : 'M_(m, n)) : eval_mx e (mx_term A) = A.
- -
-Definition mulmx_term m n p (A : 'M[term]_(m, n)) (B : 'M_(n, p)) :=
-  \matrix_(i, k) (\big[Add/0]_j (A i j × B j k))%T.
- -
-Lemma eval_mulmx e m n p (A : 'M[term]_(m, n)) (B : 'M_(n, p)) :
-  eval_mx e (mulmx_term A B) = eval_mx e A ×m eval_mx e B.
- -
- -
-Let Schur m n (A : 'M[term]_(1 + m, 1 + n)) (a := A 0 0) :=
-  \matrix_(i, j) (drsubmx A i j - a^-1 × dlsubmx A i 0%R × ursubmx A 0%R j)%T.
- -
-Fixpoint mxrank_form (r m n : nat) : 'M_(m, n) form :=
-  match m, n return 'M_(m, n) form with
-  | m'.+1, n'.+1fun A : 'M_(1 + m', 1 + n')
-    let nzA k := A k.1 k.2 != 0 in
-    let xSchur k := Schur (xrow k.1 0%R (xcol k.2 0%R A)) in
-    let recf k := Bool (r > 0) mxrank_form r.-1 (xSchur k) in
-    GRing.Pick nzA recf (Bool (r == 0%N))
-  | _, _fun _Bool (r == 0%N)
-  end%T.
- -
-Lemma mxrank_form_qf r m n (A : 'M_(m, n)) : qf_form (mxrank_form r A).
- -
-Lemma eval_mxrank e r m n (A : 'M_(m, n)) :
-  qf_eval e (mxrank_form r A) = (\rank (eval_mx e A) == r).
- -
-Lemma eval_vec_mx e m n (u : 'rV_(m × n)) :
-  eval_mx e (vec_mx u) = vec_mx (eval_mx e u).
- -
-Lemma eval_mxvec e m n (A : 'M_(m, n)) :
-  eval_mx e (mxvec A) = mxvec (eval_mx e A).
- -
-Section Subsetmx.
- -
-Variables (m1 m2 n : nat) (A : 'M[term]_(m1, n)) (B : 'M[term]_(m2, n)).
- -
-Definition submx_form :=
-  \big[And/True]_(r < n.+1) (mxrank_form r (col_mx A B) ==> mxrank_form r B)%T.
- -
-Lemma eval_col_mx e :
-  eval_mx e (col_mx A B) = col_mx (eval_mx e A) (eval_mx e B).
- -
-Lemma submx_form_qf : qf_form submx_form.
- -
-Lemma eval_submx e : qf_eval e submx_form = (eval_mx e A eval_mx e B)%MS.
- -
-End Subsetmx.
- -
-Section Env.
- -
-Variable d : nat.
- -
-Definition seq_of_rV (v : 'rV_d) : seq F := fgraph [ffun i v 0 i].
- -
-Lemma size_seq_of_rV v : size (seq_of_rV v) = d.
- -
-Lemma nth_seq_of_rV x0 v (i : 'I_d) : nth x0 (seq_of_rV v) i = v 0 i.
- -
-Definition row_var k : 'rV[term]_d := \row_i ('X_(k × d + i))%T.
- -
-Definition row_env (e : seq 'rV_d) := flatten (map seq_of_rV e).
- -
-Lemma nth_row_env e k (i : 'I_d) : (row_env e)`_(k × d + i) = e`_k 0 i.
- -
-Lemma eval_row_var e k : eval_mx (row_env e) (row_var k) = e`_k :> 'rV_d.
- -
-Definition Exists_row_form k (f : form) :=
-  foldr GRing.Exists f (codom (fun i : 'I_dk × d + i)%N).
- -
-Lemma Exists_rowP e k f :
-  d > 0
-   (( v : 'rV[F]_d, holds (row_env (set_nth 0 e k v)) f)
-       holds (row_env e) (Exists_row_form k f)).
- -
-End Env.
- -
-End MatrixFormula.
- -
-End MatrixFormula.
-
-
- - - -
- - - \ No newline at end of file -- cgit v1.2.3