From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001
From: Enrico Tassi
Date: Wed, 22 May 2019 13:43:08 +0200
Subject: htmldoc regenerated
---
docs/htmldoc/mathcomp.algebra.intdiv.html | 417 +++++++++++++++---------------
1 file changed, 208 insertions(+), 209 deletions(-)
(limited to 'docs/htmldoc/mathcomp.algebra.intdiv.html')
diff --git a/docs/htmldoc/mathcomp.algebra.intdiv.html b/docs/htmldoc/mathcomp.algebra.intdiv.html
index ccede4d..620b18d 100644
--- a/docs/htmldoc/mathcomp.algebra.intdiv.html
+++ b/docs/htmldoc/mathcomp.algebra.intdiv.html
@@ -21,7 +21,6 @@
@@ -73,111 +72,111 @@
Definition divz (m d : int) :=
- let: (K, n) := match m with Posz n ⇒ (Posz, n) | Negz n ⇒ (Negz, n) end in
- sgz d × K (n %/ `|d|)%N.
+ let: (K, n) := match m with Posz n ⇒ (Posz, n) | Negz n ⇒ (Negz, n) end in
+ sgz d × K (n %/ `|d|)%N.
-Definition modz (m d : int) : int := m - divz m d × d.
+Definition modz (m d : int) : int := m - divz m d × d.
-Definition dvdz d m := (`|d| %| `|m|)%N.
+Definition dvdz d m := (`|d| %| `|m|)%N.
-Definition gcdz m n := (gcdn `|m| `|n|)%:Z.
+Definition gcdz m n := (gcdn `|m| `|n|)%:Z.
-Definition egcdz m n : int × int :=
- if m == 0 then (0, (-1) ^+ (n < 0)%R) else
- let: (u, v) := egcdn `|m| `|n| in (sgz m × u, - (-1) ^+ (n < 0)%R × v%:Z).
+Definition egcdz m n : int × int :=
+ if m == 0 then (0, (-1) ^+ (n < 0)%R) else
+ let: (u, v) := egcdn `|m| `|n| in (sgz m × u, - (-1) ^+ (n < 0)%R × v%:Z).
-Definition coprimez m n := (gcdz m n == 1).
+Definition coprimez m n := (gcdz m n == 1).
-Infix "%/" := divz : int_scope.
-Infix "%%" := modz : int_scope.
-Notation "d %| m" := (m \in dvdz d) : int_scope.
-Notation "m = n %[mod d ]" := (modz m d = modz n d) : int_scope.
-Notation "m == n %[mod d ]" := (modz m d == modz n d) : int_scope.
-Notation "m <> n %[mod d ]" := (modz m d ≠ modz n d) : int_scope.
-Notation "m != n %[mod d ]" := (modz m d != modz n d) : int_scope.
+Infix "%/" := divz : int_scope.
+Infix "%%" := modz : int_scope.
+Notation "d %| m" := (m \in dvdz d) : int_scope.
+Notation "m = n %[mod d ]" := (modz m d = modz n d) : int_scope.
+Notation "m == n %[mod d ]" := (modz m d == modz n d) : int_scope.
+Notation "m <> n %[mod d ]" := (modz m d ≠ modz n d) : int_scope.
+Notation "m != n %[mod d ]" := (modz m d != modz n d) : int_scope.
-Lemma divz_nat (n d : nat) : (n %/ d)%Z = (n %/ d)%N.
+Lemma divz_nat (n d : nat) : (n %/ d)%Z = (n %/ d)%N.
-Lemma divzN m d : (m %/ - d)%Z = - (m %/ d)%Z.
+Lemma divzN m d : (m %/ - d)%Z = - (m %/ d)%Z.
-Lemma divz_abs m d : (m %/ `|d|)%Z = (-1) ^+ (d < 0)%R × (m %/ d)%Z.
+Lemma divz_abs m d : (m %/ `|d|)%Z = (-1) ^+ (d < 0)%R × (m %/ d)%Z.
-Lemma div0z d : (0 %/ d)%Z = 0.
+Lemma div0z d : (0 %/ d)%Z = 0.
-Lemma divNz_nat m d : (d > 0)%N → (Negz m %/ d)%Z = - (m %/ d).+1%:Z.
+Lemma divNz_nat m d : (d > 0)%N → (Negz m %/ d)%Z = - (m %/ d).+1%:Z.
-Lemma divz_eq m d : m = (m %/ d)%Z × d + (m %% d)%Z.
+Lemma divz_eq m d : m = (m %/ d)%Z × d + (m %% d)%Z.
-Lemma modzN m d : (m %% - d)%Z = (m %% d)%Z.
+Lemma modzN m d : (m %% - d)%Z = (m %% d)%Z.
-Lemma modz_abs m d : (m %% `|d|%N)%Z = (m %% d)%Z.
+Lemma modz_abs m d : (m %% `|d|%N)%Z = (m %% d)%Z.
-Lemma modz_nat (m d : nat) : (m %% d)%Z = (m %% d)%N.
+Lemma modz_nat (m d : nat) : (m %% d)%Z = (m %% d)%N.
-Lemma modNz_nat m d : (d > 0)%N → (Negz m %% d)%Z = d%:Z - 1 - (m %% d)%:Z.
+Lemma modNz_nat m d : (d > 0)%N → (Negz m %% d)%Z = d%:Z - 1 - (m %% d)%:Z.
-Lemma modz_ge0 m d : d != 0 → 0 ≤ (m %% d)%Z.
+Lemma modz_ge0 m d : d != 0 → 0 ≤ (m %% d)%Z.
-Lemma divz0 m : (m %/ 0)%Z = 0.
-Lemma mod0z d : (0 %% d)%Z = 0.
-Lemma modz0 m : (m %% 0)%Z = m.
+Lemma divz0 m : (m %/ 0)%Z = 0.
+Lemma mod0z d : (0 %% d)%Z = 0.
+Lemma modz0 m : (m %% 0)%Z = m.
-Lemma divz_small m d : 0 ≤ m < `|d|%:Z → (m %/ d)%Z = 0.
+Lemma divz_small m d : 0 ≤ m < `|d|%:Z → (m %/ d)%Z = 0.
-Lemma divzMDl q m d : d != 0 → ((q × d + m) %/ d)%Z = q + (m %/ d)%Z.
+Lemma divzMDl q m d : d != 0 → ((q × d + m) %/ d)%Z = q + (m %/ d)%Z.
-Lemma mulzK m d : d != 0 → (m × d %/ d)%Z = m.
+Lemma mulzK m d : d != 0 → (m × d %/ d)%Z = m.
-Lemma mulKz m d : d != 0 → (d × m %/ d)%Z = m.
+Lemma mulKz m d : d != 0 → (d × m %/ d)%Z = m.
-Lemma expzB p m n : p != 0 → (m ≥ n)%N → p ^+ (m - n) = (p ^+ m %/ p ^+ n)%Z.
+Lemma expzB p m n : p != 0 → (m ≥ n)%N → p ^+ (m - n) = (p ^+ m %/ p ^+ n)%Z.
-Lemma modz1 m : (m %% 1)%Z = 0.
+Lemma modz1 m : (m %% 1)%Z = 0.
-Lemma divz1 m : (m %/ 1)%Z = m.
+Lemma divz1 m : (m %/ 1)%Z = m.
-Lemma divzz d : (d %/ d)%Z = (d != 0).
+Lemma divzz d : (d %/ d)%Z = (d != 0).
-Lemma ltz_pmod m d : d > 0 → (m %% d)%Z < d.
+Lemma ltz_pmod m d : d > 0 → (m %% d)%Z < d.
-Lemma ltz_mod m d : d != 0 → (m %% d)%Z < `|d|.
+Lemma ltz_mod m d : d != 0 → (m %% d)%Z < `|d|.
-Lemma divzMpl p m d : p > 0 → (p × m %/ (p × d) = m %/ d)%Z.
+Lemma divzMpl p m d : p > 0 → (p × m %/ (p × d) = m %/ d)%Z.
-Lemma divzMpr p m d : p > 0 → (m × p %/ (d × p) = m %/ d)%Z.
+Lemma divzMpr p m d : p > 0 → (m × p %/ (d × p) = m %/ d)%Z.
-Lemma lez_floor m d : d != 0 → (m %/ d)%Z × d ≤ m.
+Lemma lez_floor m d : d != 0 → (m %/ d)%Z × d ≤ m.
@@ -186,85 +185,85 @@
leq_mod does not extend to negative m.
@@ -275,93 +274,93 @@
@@ -398,71 +397,71 @@
@@ -476,74 +475,74 @@
@@ -574,16 +573,16 @@
Definition zchinese r1 r2 :=
- r1 × m2 × (egcdz m1 m2).2 + r2 × m1 × (egcdz m1 m2).1.
+ r1 × m2 × (egcdz m1 m2).2 + r2 × m1 × (egcdz m1 m2).1.
-Lemma zchinese_modl r1 r2 : (zchinese r1 r2 = r1 %[mod m1])%Z.
+Lemma zchinese_modl r1 r2 : (zchinese r1 r2 = r1 %[mod m1])%Z.
-Lemma zchinese_modr r1 r2 : (zchinese r1 r2 = r2 %[mod m2])%Z.
+Lemma zchinese_modr r1 r2 : (zchinese r1 r2 = r2 %[mod m2])%Z.
-Lemma zchinese_mod x : (x = zchinese (x %% m1)%Z (x %% m2)%Z %[mod m1 × m2])%Z.
+Lemma zchinese_mod x : (x = zchinese (x %% m1)%Z (x %% m2)%Z %[mod m1 × m2])%Z.
End Chinese.
@@ -593,98 +592,98 @@
Definition zcontents p :=
- sgz (lead_coef p) × \big[gcdn/0%N]_(i < size p) `|(p`_i)%R|%N.
+ sgz (lead_coef p) × \big[gcdn/0%N]_(i < size p) `|(p`_i)%R|%N.
-Lemma sgz_contents p : sgz (zcontents p) = sgz (lead_coef p).
+Lemma sgz_contents p : sgz (zcontents p) = sgz (lead_coef p).
-Lemma zcontents_eq0 p : (zcontents p == 0) = (p == 0).
+Lemma zcontents_eq0 p : (zcontents p == 0) = (p == 0).
-Lemma zcontents0 : zcontents 0 = 0.
+Lemma zcontents0 : zcontents 0 = 0.
-Lemma zcontentsZ a p : zcontents (a *: p) = a × zcontents p.
+Lemma zcontentsZ a p : zcontents (a *: p) = a × zcontents p.
-Lemma zcontents_monic p : p \is monic → zcontents p = 1.
+Lemma zcontents_monic p : p \is monic → zcontents p = 1.
-Lemma dvdz_contents a p : (a %| zcontents p)%Z = (p \is a polyOver (dvdz a)).
+Lemma dvdz_contents a p : (a %| zcontents p)%Z = (p \is a polyOver (dvdz a)).
-Lemma map_poly_divzK a p :
- p \is a polyOver (dvdz a) → a *: map_poly (divz^~ a) p = p.
+Lemma map_poly_divzK {a} p :
+ p \is a polyOver (dvdz a) → a *: map_poly (divz^~ a) p = p.
Lemma polyOver_dvdzP a p :
- reflect (∃ q, p = a *: q) (p \is a polyOver (dvdz a)).
+ reflect (∃ q, p = a *: q) (p \is a polyOver (dvdz a)).
-Definition zprimitive p := map_poly (divz^~ (zcontents p)) p.
+Definition zprimitive p := map_poly (divz^~ (zcontents p)) p.
-Lemma zpolyEprim p : p = zcontents p *: zprimitive p.
+Lemma zpolyEprim p : p = zcontents p *: zprimitive p.
-Lemma zprimitive0 : zprimitive 0 = 0.
+Lemma zprimitive0 : zprimitive 0 = 0.
-Lemma zprimitive_eq0 p : (zprimitive p == 0) = (p == 0).
+Lemma zprimitive_eq0 p : (zprimitive p == 0) = (p == 0).
-Lemma size_zprimitive p : size (zprimitive p) = size p.
+Lemma size_zprimitive p : size (zprimitive p) = size p.
-Lemma sgz_lead_primitive p : sgz (lead_coef (zprimitive p)) = (p != 0).
+Lemma sgz_lead_primitive p : sgz (lead_coef (zprimitive p)) = (p != 0).
-Lemma zcontents_primitive p : zcontents (zprimitive p) = (p != 0).
+Lemma zcontents_primitive p : zcontents (zprimitive p) = (p != 0).
-Lemma zprimitive_id p : zprimitive (zprimitive p) = zprimitive p.
+Lemma zprimitive_id p : zprimitive (zprimitive p) = zprimitive p.
-Lemma zprimitive_monic p : p \in monic → zprimitive p = p.
+Lemma zprimitive_monic p : p \in monic → zprimitive p = p.
-Lemma zprimitiveZ a p : a != 0 → zprimitive (a *: p) = zprimitive p.
+Lemma zprimitiveZ a p : a != 0 → zprimitive (a *: p) = zprimitive p.
Lemma zprimitive_min p a q :
- p != 0 → p = a *: q →
- {b | sgz b = sgz (lead_coef q) & q = b *: zprimitive p}.
+ p != 0 → p = a *: q →
+ {b | sgz b = sgz (lead_coef q) & q = b *: zprimitive p}.
Lemma zprimitive_irr p a q :
- p != 0 → zprimitive p = a *: q → a = sgz (lead_coef q).
+ p != 0 → zprimitive p = a *: q → a = sgz (lead_coef q).
-Lemma zcontentsM p q : zcontents (p × q) = zcontents p × zcontents q.
+Lemma zcontentsM p q : zcontents (p × q) = zcontents p × zcontents q.
-Lemma zprimitiveM p q : zprimitive (p × q) = zprimitive p × zprimitive q.
+Lemma zprimitiveM p q : zprimitive (p × q) = zprimitive p × zprimitive q.
-Lemma dvdpP_int p q : p %| q → {r | q = zprimitive p × r}.
+Lemma dvdpP_int p q : p %| q → {r | q = zprimitive p × r}.
-Lemma size_rat_int_poly p : size (pZtoQ p) = size p.
+Lemma size_rat_int_poly p : size (pZtoQ p) = size p.
-Lemma rat_poly_scale (p : {poly rat}) :
- {q : {poly int} & {a | a != 0 & p = a%:~R^-1 *: pZtoQ q}}.
+Lemma rat_poly_scale (p : {poly rat}) :
+ {q : {poly int} & {a | a != 0 & p = a%:~R^-1 *: pZtoQ q}}.
-Lemma dvdp_rat_int p q : (pZtoQ p %| pZtoQ q) = (p %| q).
+Lemma dvdp_rat_int p q : (pZtoQ p %| pZtoQ q) = (p %| q).
Lemma dvdpP_rat_int p q :
- p %| pZtoQ q →
- {p1 : {poly int} & {a | a != 0 & p = a *: pZtoQ p1} & {r | q = p1 × r}}.
+ p %| pZtoQ q →
+ {p1 : {poly int} & {a | a != 0 & p = a *: pZtoQ p1} & {r | q = p1 × r}}.
End ZpolyScale.
@@ -698,19 +697,19 @@
--
cgit v1.2.3