From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001
From: Enrico Tassi
Date: Wed, 22 May 2019 13:43:08 +0200
Subject: htmldoc regenerated
---
docs/htmldoc/mathcomp.algebra.fraction.html | 187 ++++++++++++++--------------
1 file changed, 93 insertions(+), 94 deletions(-)
(limited to 'docs/htmldoc/mathcomp.algebra.fraction.html')
diff --git a/docs/htmldoc/mathcomp.algebra.fraction.html b/docs/htmldoc/mathcomp.algebra.fraction.html
index 2b78b50..745fa06 100644
--- a/docs/htmldoc/mathcomp.algebra.fraction.html
+++ b/docs/htmldoc/mathcomp.algebra.fraction.html
@@ -21,7 +21,6 @@
@@ -58,58 +57,58 @@
ratios are pairs of R, such that the second member is nonzero
-
Inductive ratio :=
mkRatio {
frac :>
R × R;
_ :
frac.2 != 0 }.
-
Definition ratio_of of phant R :=
ratio.
+
Inductive ratio :=
mkRatio {
frac :>
R × R;
_ :
frac.2 != 0 }.
+
Definition ratio_of of phant R :=
ratio.
-
Canonical ratio_subType :=
Eval hnf in [subType for frac].
-
Canonical ratio_of_subType :=
Eval hnf in [subType of {ratio R}].
-
Definition ratio_EqMixin :=
[eqMixin of ratio by <:].
+
Canonical ratio_subType :=
Eval hnf in [subType for frac].
+
Canonical ratio_of_subType :=
Eval hnf in [subType of {ratio R}].
+
Definition ratio_EqMixin :=
[eqMixin of ratio by <:].
Canonical ratio_eqType :=
EqType ratio ratio_EqMixin.
-
Canonical ratio_of_eqType :=
Eval hnf in [eqType of {ratio R}].
-
Definition ratio_ChoiceMixin :=
[choiceMixin of ratio by <:].
+
Canonical ratio_of_eqType :=
Eval hnf in [eqType of {ratio R}].
+
Definition ratio_ChoiceMixin :=
[choiceMixin of ratio by <:].
Canonical ratio_choiceType :=
ChoiceType ratio ratio_ChoiceMixin.
-
Canonical ratio_of_choiceType :=
Eval hnf in [choiceType of {ratio R}].
+
Canonical ratio_of_choiceType :=
Eval hnf in [choiceType of {ratio R}].
-
Lemma denom_ratioP :
∀ f :
ratio,
f.2 != 0.
+
Lemma denom_ratioP :
∀ f :
ratio,
f.2 != 0.
-
Definition ratio0 := (@
mkRatio (0
, 1
) (
oner_neq0 _)).
-
Definition Ratio x y :
{ratio R} :=
insubd ratio0 (x, y).
+
Definition ratio0 := (@
mkRatio (0
, 1
) (
oner_neq0 _)).
+
Definition Ratio x y :
{ratio R} :=
insubd ratio0 (x, y).
-
Lemma numer_Ratio x y :
y != 0
→ (Ratio x y).1 = x.
+
Lemma numer_Ratio x y :
y != 0
→ (Ratio x y).1 = x.
-
Lemma denom_Ratio x y :
y != 0
→ (Ratio x y).2 = y.
+
Lemma denom_Ratio x y :
y != 0
→ (Ratio x y).2 = y.
-
Definition numden_Ratio :=
(numer_Ratio, denom_Ratio).
+
Definition numden_Ratio :=
(numer_Ratio, denom_Ratio).
-
CoInductive Ratio_spec (
n d :
R) :
{ratio R} → R → R → Type :=
- |
RatioNull of d = 0 :
Ratio_spec n d ratio0 n 0
- |
RatioNonNull (
d_neq0 :
d != 0) :
-
Ratio_spec n d (@
mkRatio (n, d) d_neq0)
n d.
+
Variant Ratio_spec (
n d :
R) :
{ratio R} → R → R → Type :=
+ |
RatioNull of d = 0 :
Ratio_spec n d ratio0 n 0
+ |
RatioNonNull (
d_neq0 :
d != 0) :
+
Ratio_spec n d (@
mkRatio (n, d) d_neq0)
n d.
Lemma RatioP n d :
Ratio_spec n d (
Ratio n d)
n d.
-
Lemma Ratio0 x :
Ratio x 0
= ratio0.
+
Lemma Ratio0 x :
Ratio x 0
= ratio0.
End FracDomain.
-
Notation "{ 'ratio' T }" := (
ratio_of (
Phant T)).
+
Notation "{ 'ratio' T }" := (
ratio_of (
Phant T)).
Identity Coercion type_fracdomain_of :
ratio_of >->
ratio.
-
Notation "'\n_' x" :=
(frac x).1
+
Notation "'\n_' x" :=
(frac x).1
(
at level 8,
x at level 2,
format "'\n_' x").
-
Notation "'\d_' x" :=
(frac x).2
+
Notation "'\d_' x" :=
(frac x).2
(
at level 8,
x at level 2,
format "'\d_' x").
@@ -134,16 +133,16 @@
Definition equivf x y :=
equivf_notation x y.
-
Lemma equivfE x y :
equivf x y = equivf_notation x y.
+
Lemma equivfE x y :
equivf x y = equivf_notation x y.
-
Lemma equivf_refl :
reflexive equivf.
+
Lemma equivf_refl :
reflexive equivf.
-
Lemma equivf_sym :
symmetric equivf.
+
Lemma equivf_sym :
symmetric equivf.
-
Lemma equivf_trans :
transitive equivf.
+
Lemma equivf_trans :
transitive equivf.
@@ -155,9 +154,9 @@
Canonical equivf_equiv := EquivRel equivf equivf_refl equivf_sym equivf_trans.
-Definition type := {eq_quot equivf}.
-Definition type_of of phant R := type.
-Notation "{ 'fraction' T }" := (type_of (Phant T)).
+Definition type := {eq_quot equivf}.
+Definition type_of of phant R := type.
+Notation "{ 'fraction' T }" := (type_of (Phant T)).
@@ -166,16 +165,16 @@
we recover some structure for the quotient
@@ -184,72 +183,72 @@
we explain what was the equivalence on the quotient
@@ -262,19 +261,19 @@
Canonical frac_zmodType := Eval hnf in ZmodType type frac_zmodMixin.
-Lemma mulA : associative mul.
+Lemma mulA : associative mul.
-Lemma mulC : commutative mul.
+Lemma mulC : commutative mul.
-Lemma mul1_l : left_id 1%:F mul.
+Lemma mul1_l : left_id 1%:F mul.
-Lemma mul_addl : left_distributive mul add.
+Lemma mul_addl : left_distributive mul add.
-Lemma nonzero1 : 1%:F != 0%:F :> type.
+Lemma nonzero1 : 1%:F != 0%:F :> type.
@@ -288,10 +287,10 @@
Canonical frac_comRingType := Eval hnf in ComRingType type mulC.
-Lemma mulV_l : ∀ a, a != 0%:F → mul (inv a) a = 1%:F.
+Lemma mulV_l : ∀ a, a != 0%:F → mul (inv a) a = 1%:F.
-Lemma inv0 : inv 0%:F = 0%:F.
+Lemma inv0 : inv 0%:F = 0%:F.
@@ -302,7 +301,7 @@
@@ -405,21 +404,21 @@
tests
--
cgit v1.2.3