From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.algebra.finalg.html | 1414 +++++++++++++++++++++++++++++ 1 file changed, 1414 insertions(+) create mode 100644 docs/htmldoc/mathcomp.algebra.finalg.html (limited to 'docs/htmldoc/mathcomp.algebra.finalg.html') diff --git a/docs/htmldoc/mathcomp.algebra.finalg.html b/docs/htmldoc/mathcomp.algebra.finalg.html new file mode 100644 index 0000000..75808e7 --- /dev/null +++ b/docs/htmldoc/mathcomp.algebra.finalg.html @@ -0,0 +1,1414 @@ + + + + + +mathcomp.algebra.finalg + + + + +
+ + + +
+ +

Library mathcomp.algebra.finalg

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ This file clones the entire ssralg hierachy for finite types; this allows + type inference to function properly on expressions that mix combinatorial + and algebraic operators (e.g., [set x + y | x in A, y in A]). + finZmodType, finRingType, finComRingType, finUnitRingType, + finComUnitRingType, finIdomType, finFieldType finLmodType, + finLalgType finAlgType finUnitAlgType + == the finite counterparts of zmodType, etc. + Note that a finFieldType is canonically decidable. All these structures + can be derived using [xxxType of T] forms, e.g., if R has both canonical + finType and ringType structures, then + Canonical R_finRingType := Eval hnf in [finRingType of R]. + declares the derived finRingType structure for R. As the implementation + of the derivation is somewhat involved, the Eval hnf normalization is + strongly recommended. + This file also provides direct tie-ins with finite group theory: + [baseFinGroupType of R for +%R] == the (canonical) additive group + [finGroupType of R for +%R] structures for R + {unit R} == the type of units of R, which has a + canonical group structure. + FinRing.unit R Ux == the element of {unit R} corresponding + to x, where Ux : x \in GRing.unit. + 'U%act == the action by right multiplication of + {unit R} on R, via FinRing.unit_act. + (This is also a group action.) +
+
+ +
+Local Open Scope ring_scope.
+ +
+Set Implicit Arguments.
+ +
+Module FinRing.
+ +
+ +
+Section Generic.
+ +
+
+ +
+ Implicits +
+
+Variables (type base_type : Type) (class_of base_of : Type Type).
+Variable to_choice : T, base_of T Choice.class_of T.
+Variable base_sort : base_type Type.
+ +
+
+ +
+ Explicits +
+
+Variable Pack : T, class_of T Type type.
+Variable Class : T b, mixin_of T (to_choice b) class_of T.
+Variable base_class : bT, base_of (base_sort bT).
+ +
+Definition gen_pack T :=
+  fun bT b & phant_id (base_class bT) b
+  fun fT m & phant_id (Finite.class fT) (Finite.Class m) ⇒
+  Pack (@Class T b m) T.
+ +
+End Generic.
+ +
+Import GRing.Theory.
+ +
+Definition groupMixin V := FinGroup.Mixin (@addrA V) (@add0r V) (@addNr V).
+ +
+Module Zmodule.
+ +
+Section ClassDef.
+ +
+Record class_of M :=
+  Class { base : GRing.Zmodule.class_of M; mixin : mixin_of M base }.
+ +
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Definition pack := gen_pack Pack Class GRing.Zmodule.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+ +
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (fin_ xclass) xT.
+Definition finType := @Finite.Pack cT (fin_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+ +
+Definition join_finType := @Finite.Pack zmodType (fin_ xclass) xT.
+ +
+Definition baseFinGroupType := base_group cT zmodType finType.
+Definition finGroupType := fin_group baseFinGroupType zmodType.
+Definition join_baseFinGroupType := base_group zmodType zmodType finType.
+Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
+ +
+End ClassDef.
+ +
+Module Exports.
+Coercion base : class_of >-> GRing.Zmodule.class_of.
+Coercion mixin : class_of >-> mixin_of.
+Coercion sort : type >-> Sortclass.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion finType : type >-> Finite.type.
+Canonical finType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Canonical join_finType.
+Notation finZmodType := type.
+Notation "[ 'finZmodType' 'of' T ]" := (do_pack pack T)
+  (at level 0, format "[ 'finZmodType' 'of' T ]") : form_scope.
+Coercion baseFinGroupType : type >-> FinGroup.base_type.
+Canonical baseFinGroupType.
+Coercion finGroupType : type >-> FinGroup.type.
+Canonical finGroupType.
+Canonical join_baseFinGroupType.
+Canonical join_finGroupType.
+Notation "[ 'baseFinGroupType' 'of' R 'for' +%R ]" :=
+    (BaseFinGroupType R (groupMixin _))
+  (at level 0, format "[ 'baseFinGroupType' 'of' R 'for' +%R ]")
+    : form_scope.
+Notation "[ 'finGroupType' 'of' R 'for' +%R ]" :=
+    (@FinGroup.clone R _ (finGroupType _) id _ id)
+  (at level 0, format "[ 'finGroupType' 'of' R 'for' +%R ]") : form_scope.
+End Exports.
+ +
+End Zmodule.
+Import Zmodule.Exports.
+ +
+Section AdditiveGroup.
+ +
+Variable U : finZmodType.
+Implicit Types x y : U.
+ +
+Lemma zmod1gE : 1%g = 0 :> U.
+Lemma zmodVgE x : x^-1%g = - x.
+Lemma zmodMgE x y : (x × y)%g = x + y.
+Lemma zmodXgE n x : (x ^+ n)%g = x *+ n.
+Lemma zmod_mulgC x y : commute x y.
+Lemma zmod_abelian (A : {set U}) : abelian A.
+ +
+End AdditiveGroup.
+ +
+Module Ring.
+ +
+Section ClassDef.
+ +
+Record class_of R :=
+  Class { base : GRing.Ring.class_of R; mixin : mixin_of R base }.
+Definition base2 R (c : class_of R) := Zmodule.Class (mixin c).
+ +
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Definition pack := gen_pack Pack Class GRing.Ring.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+ +
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (fin_ xclass) xT.
+Definition finType := @Finite.Pack cT (fin_ xclass) cT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass cT.
+Definition finZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition join_finType := @Finite.Pack ringType (fin_ xclass) xT.
+Definition join_finZmodType := @Zmodule.Pack ringType xclass xT.
+ +
+Definition baseFinGroupType := base_group cT zmodType finType.
+Definition finGroupType := fin_group baseFinGroupType zmodType.
+Definition join_baseFinGroupType := base_group ringType zmodType finType.
+Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
+ +
+End ClassDef.
+ +
+Module Import Exports.
+Coercion base : class_of >-> GRing.Ring.class_of.
+Coercion base2 : class_of >-> Zmodule.class_of.
+Coercion sort : type >-> Sortclass.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion finType : type >-> Finite.type.
+Canonical finType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion finZmodType : type >-> Zmodule.type.
+Canonical finZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Canonical join_finType.
+Canonical join_finZmodType.
+Notation finRingType := type.
+Notation "[ 'finRingType' 'of' T ]" := (do_pack pack T)
+  (at level 0, format "[ 'finRingType' 'of' T ]") : form_scope.
+Canonical baseFinGroupType.
+Canonical finGroupType.
+Canonical join_baseFinGroupType.
+Canonical join_finGroupType.
+End Exports.
+ +
+Section Unit.
+ +
+Variable R : finRingType.
+ +
+Definition is_inv (x y : R) := (x × y == 1) && (y × x == 1).
+Definition unit := [qualify a x : R | [ y, is_inv x y]].
+Definition inv x := odflt x (pick (is_inv x)).
+ +
+Lemma mulVr : {in unit, left_inverse 1 inv *%R}.
+ +
+Lemma mulrV : {in unit, right_inverse 1 inv *%R}.
+ +
+Lemma intro_unit x y : y × x = 1 x × y = 1 x \is a unit.
+ +
+Lemma invr_out : {in [predC unit], inv =1 id}.
+ +
+Definition UnitMixin := GRing.UnitRing.Mixin mulVr mulrV intro_unit invr_out.
+ +
+End Unit.
+ +
+End Ring.
+Import Ring.Exports.
+ +
+Module ComRing.
+ +
+Section ClassDef.
+ +
+Record class_of R :=
+  Class { base : GRing.ComRing.class_of R; mixin : mixin_of R base }.
+Definition base2 R (c : class_of R) := Ring.Class (mixin c).
+ +
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Definition pack := gen_pack Pack Class GRing.ComRing.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+ +
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (fin_ xclass) xT.
+Definition finType := @Finite.Pack cT (fin_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition finZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition finRingType := @Ring.Pack cT xclass xT.
+Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
+Definition join_finType := @Finite.Pack comRingType (fin_ xclass) xT.
+Definition join_finZmodType := @Zmodule.Pack comRingType xclass xT.
+Definition join_finRingType := @Ring.Pack comRingType xclass xT.
+ +
+Definition baseFinGroupType := base_group cT zmodType finType.
+Definition finGroupType := fin_group baseFinGroupType zmodType.
+Definition join_baseFinGroupType := base_group comRingType zmodType finType.
+Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
+ +
+End ClassDef.
+ +
+Module Exports.
+Coercion base : class_of >-> GRing.ComRing.class_of.
+Coercion base2 : class_of >-> Ring.class_of.
+Coercion sort : type >-> Sortclass.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion finType : type >-> Finite.type.
+Canonical finType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion finZmodType : type >-> Zmodule.type.
+Canonical finZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion finRingType : type >-> Ring.type.
+Canonical finRingType.
+Coercion comRingType : type >-> GRing.ComRing.type.
+Canonical comRingType.
+Canonical join_finType.
+Canonical join_finZmodType.
+Canonical join_finRingType.
+Notation finComRingType := FinRing.ComRing.type.
+Notation "[ 'finComRingType' 'of' T ]" := (do_pack pack T)
+  (at level 0, format "[ 'finComRingType' 'of' T ]") : form_scope.
+Canonical baseFinGroupType.
+Canonical finGroupType.
+Canonical join_baseFinGroupType.
+Canonical join_finGroupType.
+End Exports.
+ +
+End ComRing.
+Import ComRing.Exports.
+ +
+Module UnitRing.
+ +
+Section ClassDef.
+ +
+Record class_of R :=
+  Class { base : GRing.UnitRing.class_of R; mixin : mixin_of R base }.
+Definition base2 R (c : class_of R) := Ring.Class (mixin c).
+ +
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Definition pack := gen_pack Pack Class GRing.UnitRing.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+ +
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (fin_ xclass) xT.
+Definition finType := @Finite.Pack cT (fin_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition finZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition finRingType := @Ring.Pack cT xclass xT.
+Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
+ +
+Definition join_finType := @Finite.Pack unitRingType (fin_ xclass) xT.
+Definition join_finZmodType := @Zmodule.Pack unitRingType xclass xT.
+Definition join_finRingType := @Ring.Pack unitRingType xclass xT.
+ +
+Definition baseFinGroupType := base_group cT zmodType finType.
+Definition finGroupType := fin_group baseFinGroupType zmodType.
+Definition join_baseFinGroupType := base_group unitRingType zmodType finType.
+Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
+ +
+End ClassDef.
+ +
+Module Exports.
+Coercion base : class_of >-> GRing.UnitRing.class_of.
+Coercion base2 : class_of >-> Ring.class_of.
+Coercion sort : type >-> Sortclass.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion finType : type >-> Finite.type.
+Canonical finType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion finZmodType : type >-> Zmodule.type.
+Canonical finZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion finRingType : type >-> Ring.type.
+Canonical finRingType.
+Coercion unitRingType : type >-> GRing.UnitRing.type.
+Canonical unitRingType.
+Canonical join_finType.
+Canonical join_finZmodType.
+Canonical join_finRingType.
+Notation finUnitRingType := FinRing.UnitRing.type.
+Notation "[ 'finUnitRingType' 'of' T ]" := (do_pack pack T)
+  (at level 0, format "[ 'finUnitRingType' 'of' T ]") : form_scope.
+Canonical baseFinGroupType.
+Canonical finGroupType.
+Canonical join_baseFinGroupType.
+Canonical join_finGroupType.
+End Exports.
+ +
+End UnitRing.
+Import UnitRing.Exports.
+ +
+Section UnitsGroup.
+ +
+Variable R : finUnitRingType.
+ +
+Inductive unit_of (phR : phant R) := Unit (x : R) of x \is a GRing.unit.
+ +
+Let phR := Phant R.
+Implicit Types u v : uT.
+Definition uval u := let: Unit x _ := u in x.
+ +
+Canonical unit_subType := [subType for uval].
+Definition unit_eqMixin := Eval hnf in [eqMixin of uT by <:].
+Canonical unit_eqType := Eval hnf in EqType uT unit_eqMixin.
+Definition unit_choiceMixin := [choiceMixin of uT by <:].
+Canonical unit_choiceType := Eval hnf in ChoiceType uT unit_choiceMixin.
+Definition unit_countMixin := [countMixin of uT by <:].
+Canonical unit_countType := Eval hnf in CountType uT unit_countMixin.
+Canonical unit_subCountType := Eval hnf in [subCountType of uT].
+Definition unit_finMixin := [finMixin of uT by <:].
+Canonical unit_finType := Eval hnf in FinType uT unit_finMixin.
+Canonical unit_subFinType := Eval hnf in [subFinType of uT].
+ +
+Definition unit1 := Unit phR (@GRing.unitr1 _).
+Lemma unit_inv_proof u : (val u)^-1 \is a GRing.unit.
+ Definition unit_inv u := Unit phR (unit_inv_proof u).
+Lemma unit_mul_proof u v : val u × val v \is a GRing.unit.
+ Definition unit_mul u v := Unit phR (unit_mul_proof u v).
+Lemma unit_muluA : associative unit_mul.
+ Lemma unit_mul1u : left_id unit1 unit_mul.
+ Lemma unit_mulVu : left_inverse unit1 unit_inv unit_mul.
+ +
+Definition unit_GroupMixin := FinGroup.Mixin unit_muluA unit_mul1u unit_mulVu.
+Canonical unit_baseFinGroupType :=
+  Eval hnf in BaseFinGroupType uT unit_GroupMixin.
+Canonical unit_finGroupType := Eval hnf in FinGroupType unit_mulVu.
+ +
+Lemma val_unit1 : val (1%g : uT) = 1.
+Lemma val_unitM x y : val (x × y : uT)%g = val x × val y.
+Lemma val_unitV x : val (x^-1 : uT)%g = (val x)^-1.
+Lemma val_unitX n x : val (x ^+ n : uT)%g = val x ^+ n.
+ +
+Definition unit_act x u := x × val u.
+Lemma unit_actE x u : unit_act x u = x × val u.
+ +
+Canonical unit_action :=
+  @TotalAction _ _ unit_act (@GRing.mulr1 _) (fun _ _ _GRing.mulrA _ _ _).
+Lemma unit_is_groupAction : @is_groupAction _ R setT setT unit_action.
+Canonical unit_groupAction := GroupAction unit_is_groupAction.
+ +
+End UnitsGroup.
+ +
+Module Import UnitsGroupExports.
+Canonical unit_subType.
+Canonical unit_eqType.
+Canonical unit_choiceType.
+Canonical unit_countType.
+Canonical unit_subCountType.
+Canonical unit_finType.
+Canonical unit_subFinType.
+Canonical unit_baseFinGroupType.
+Canonical unit_finGroupType.
+Canonical unit_action.
+Canonical unit_groupAction.
+End UnitsGroupExports.
+ +
+Notation unit R Ux := (Unit (Phant R) Ux).
+ +
+Module ComUnitRing.
+ +
+Section ClassDef.
+ +
+Record class_of R :=
+  Class { base : GRing.ComUnitRing.class_of R; mixin : mixin_of R base }.
+Definition base2 R (c : class_of R) := ComRing.Class (mixin c).
+Definition base3 R (c : class_of R) := @UnitRing.Class R (base c) (mixin c).
+ +
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Definition pack := gen_pack Pack Class GRing.ComUnitRing.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+ +
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (fin_ xclass) xT.
+Definition finType := @Finite.Pack cT (fin_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition finZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition finRingType := @Ring.Pack cT xclass xT.
+Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
+Definition finComRingType := @ComRing.Pack cT xclass xT.
+Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
+Definition finUnitRingType := @UnitRing.Pack cT xclass xT.
+Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
+ +
+Definition join_finType := @Finite.Pack comUnitRingType (fin_ xclass) xT.
+Definition join_finZmodType := @Zmodule.Pack comUnitRingType xclass xT.
+Definition join_finRingType := @Ring.Pack comUnitRingType xclass xT.
+Definition join_finComRingType := @ComRing.Pack comUnitRingType xclass xT.
+Definition join_finUnitRingType := @UnitRing.Pack comUnitRingType xclass xT.
+Definition ujoin_finComRingType := @ComRing.Pack unitRingType xclass xT.
+Definition cjoin_finUnitRingType := @UnitRing.Pack comRingType xclass xT.
+Definition fcjoin_finUnitRingType := @UnitRing.Pack finComRingType xclass xT.
+ +
+Definition baseFinGroupType := base_group cT zmodType finType.
+Definition finGroupType := fin_group baseFinGroupType zmodType.
+Definition join_baseFinGroupType := base_group comUnitRingType zmodType finType.
+Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
+ +
+End ClassDef.
+ +
+Module Exports.
+Coercion base : class_of >-> GRing.ComUnitRing.class_of.
+Coercion base2 : class_of >-> ComRing.class_of.
+Coercion base3 : class_of >-> UnitRing.class_of.
+Coercion sort : type >-> Sortclass.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion finType : type >-> Finite.type.
+Canonical finType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion finZmodType : type >-> Zmodule.type.
+Canonical finZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion finRingType : type >-> Ring.type.
+Canonical finRingType.
+Coercion comRingType : type >-> GRing.ComRing.type.
+Canonical comRingType.
+Coercion finComRingType : type >-> ComRing.type.
+Canonical finComRingType.
+Coercion unitRingType : type >-> GRing.UnitRing.type.
+Canonical unitRingType.
+Coercion finUnitRingType : type >-> UnitRing.type.
+Canonical finUnitRingType.
+Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
+Canonical comUnitRingType.
+Canonical join_finType.
+Canonical join_finZmodType.
+Canonical join_finRingType.
+Canonical join_finComRingType.
+Canonical join_finUnitRingType.
+Canonical ujoin_finComRingType.
+Canonical cjoin_finUnitRingType.
+Canonical fcjoin_finUnitRingType.
+Notation finComUnitRingType := FinRing.ComUnitRing.type.
+Notation "[ 'finComUnitRingType' 'of' T ]" := (do_pack pack T)
+  (at level 0, format "[ 'finComUnitRingType' 'of' T ]") : form_scope.
+Canonical baseFinGroupType.
+Canonical finGroupType.
+Canonical join_baseFinGroupType.
+Canonical join_finGroupType.
+End Exports.
+ +
+End ComUnitRing.
+Import ComUnitRing.Exports.
+ +
+Module IntegralDomain.
+ +
+Section ClassDef.
+ +
+Record class_of R :=
+  Class { base : GRing.IntegralDomain.class_of R; mixin : mixin_of R base }.
+Definition base2 R (c : class_of R) := ComUnitRing.Class (mixin c).
+ +
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Definition pack := gen_pack Pack Class GRing.IntegralDomain.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+ +
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (fin_ xclass) xT.
+Definition finType := @Finite.Pack cT (fin_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition finZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition finRingType := @Ring.Pack cT xclass xT.
+Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
+Definition finComRingType := @ComRing.Pack cT xclass xT.
+Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
+Definition finUnitRingType := @UnitRing.Pack cT xclass xT.
+Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
+Definition finComUnitRingType := @ComUnitRing.Pack cT xclass xT.
+Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT.
+ +
+Definition join_finType := @Finite.Pack idomainType (fin_ xclass) xT.
+Definition join_finZmodType := @Zmodule.Pack idomainType xclass xT.
+Definition join_finRingType := @Ring.Pack idomainType xclass xT.
+Definition join_finUnitRingType := @UnitRing.Pack idomainType xclass xT.
+Definition join_finComRingType := @ComRing.Pack idomainType xclass xT.
+Definition join_finComUnitRingType := @ComUnitRing.Pack idomainType xclass xT.
+ +
+Definition baseFinGroupType := base_group cT zmodType finType.
+Definition finGroupType := fin_group baseFinGroupType zmodType.
+Definition join_baseFinGroupType := base_group idomainType zmodType finType.
+Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
+ +
+End ClassDef.
+ +
+Module Exports.
+Coercion base : class_of >-> GRing.IntegralDomain.class_of.
+Coercion base2 : class_of >-> ComUnitRing.class_of.
+Coercion sort : type >-> Sortclass.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion finType : type >-> Finite.type.
+Canonical finType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion finZmodType : type >-> Zmodule.type.
+Canonical finZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion finRingType : type >-> Ring.type.
+Canonical finRingType.
+Coercion comRingType : type >-> GRing.ComRing.type.
+Canonical comRingType.
+Coercion finComRingType : type >-> ComRing.type.
+Canonical finComRingType.
+Coercion unitRingType : type >-> GRing.UnitRing.type.
+Canonical unitRingType.
+Coercion finUnitRingType : type >-> UnitRing.type.
+Canonical finUnitRingType.
+Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
+Canonical comUnitRingType.
+Coercion finComUnitRingType : type >-> ComUnitRing.type.
+Canonical finComUnitRingType.
+Coercion idomainType : type >-> GRing.IntegralDomain.type.
+Canonical idomainType.
+Canonical join_finType.
+Canonical join_finZmodType.
+Canonical join_finRingType.
+Canonical join_finComRingType.
+Canonical join_finUnitRingType.
+Canonical join_finComUnitRingType.
+Notation finIdomainType := FinRing.IntegralDomain.type.
+Notation "[ 'finIdomainType' 'of' T ]" := (do_pack pack T)
+  (at level 0, format "[ 'finIdomainType' 'of' T ]") : form_scope.
+Canonical baseFinGroupType.
+Canonical finGroupType.
+Canonical join_baseFinGroupType.
+Canonical join_finGroupType.
+End Exports.
+ +
+End IntegralDomain.
+Import IntegralDomain.Exports.
+ +
+Module Field.
+ +
+Section ClassDef.
+ +
+Record class_of R :=
+  Class { base : GRing.Field.class_of R; mixin : mixin_of R base }.
+Definition base2 R (c : class_of R) := IntegralDomain.Class (mixin c).
+ +
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Definition pack := gen_pack Pack Class GRing.Field.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+ +
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (fin_ xclass) xT.
+Definition finType := @Finite.Pack cT (fin_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition finZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition finRingType := @Ring.Pack cT xclass xT.
+Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
+Definition finComRingType := @ComRing.Pack cT xclass xT.
+Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
+Definition finUnitRingType := @UnitRing.Pack cT xclass xT.
+Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
+Definition finComUnitRingType := @ComUnitRing.Pack cT xclass xT.
+Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT.
+Definition finIdomainType := @IntegralDomain.Pack cT xclass xT.
+Definition fieldType := @GRing.Field.Pack cT xclass xT.
+ +
+Definition join_finType := @Finite.Pack fieldType (fin_ xclass) xT.
+Definition join_finZmodType := @Zmodule.Pack fieldType xclass xT.
+Definition join_finRingType := @Ring.Pack fieldType xclass xT.
+Definition join_finUnitRingType := @UnitRing.Pack fieldType xclass xT.
+Definition join_finComRingType := @ComRing.Pack fieldType xclass xT.
+Definition join_finComUnitRingType := @ComUnitRing.Pack fieldType xclass xT.
+Definition join_finIdomainType := @IntegralDomain.Pack fieldType xclass xT.
+ +
+Definition baseFinGroupType := base_group cT zmodType finType.
+Definition finGroupType := fin_group baseFinGroupType zmodType.
+Definition join_baseFinGroupType := base_group fieldType zmodType finType.
+Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
+ +
+End ClassDef.
+ +
+Module Exports.
+Coercion base : class_of >-> GRing.Field.class_of.
+Coercion base2 : class_of >-> IntegralDomain.class_of.
+Coercion sort : type >-> Sortclass.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion finType : type >-> Finite.type.
+Canonical finType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion finZmodType : type >-> Zmodule.type.
+Canonical finZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion finRingType : type >-> Ring.type.
+Canonical finRingType.
+Coercion comRingType : type >-> GRing.ComRing.type.
+Canonical comRingType.
+Coercion finComRingType : type >-> ComRing.type.
+Canonical finComRingType.
+Coercion unitRingType : type >-> GRing.UnitRing.type.
+Canonical unitRingType.
+Coercion finUnitRingType : type >-> UnitRing.type.
+Canonical finUnitRingType.
+Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
+Canonical comUnitRingType.
+Coercion finComUnitRingType : type >-> ComUnitRing.type.
+Canonical finComUnitRingType.
+Coercion idomainType : type >-> GRing.IntegralDomain.type.
+Canonical idomainType.
+Coercion finIdomainType : type >-> IntegralDomain.type.
+Canonical finIdomainType.
+Coercion fieldType : type >-> GRing.Field.type.
+Canonical fieldType.
+Canonical join_finType.
+Canonical join_finZmodType.
+Canonical join_finRingType.
+Canonical join_finComRingType.
+Canonical join_finUnitRingType.
+Canonical join_finComUnitRingType.
+Canonical join_finIdomainType.
+Notation finFieldType := FinRing.Field.type.
+Notation "[ 'finFieldType' 'of' T ]" := (do_pack pack T)
+  (at level 0, format "[ 'finFieldType' 'of' T ]") : form_scope.
+Canonical baseFinGroupType.
+Canonical finGroupType.
+Canonical join_baseFinGroupType.
+Canonical join_finGroupType.
+End Exports.
+ +
+End Field.
+Import Field.Exports.
+ +
+Section DecideField.
+ +
+Variable F : Field.type.
+ +
+Fixpoint sat e f :=
+  match f with
+  | GRing.Bool bb
+  | t1 == t2 ⇒ (GRing.eval e t1 == GRing.eval e t2)%bool
+  | GRing.Unit tGRing.eval e t \is a GRing.unit
+  | f1 f2sat e f1 && sat e f2
+  | f1 f2sat e f1 || sat e f2
+  | f1 ==> f2 ⇒ (sat e f1 ==> sat e f2)%bool
+  | ¬ f1~~ sat e f1
+  | (' 'X_k, f1) ⇒ [ x : F, sat (set_nth 0%R e k x) f1]
+  | (' 'X_k, f1) ⇒ [ x : F, sat (set_nth 0%R e k x) f1]
+  end%T.
+ +
+Lemma decidable : GRing.DecidableField.axiom sat.
+ +
+Definition DecidableFieldMixin := DecFieldMixin decidable.
+ +
+End DecideField.
+ +
+Module DecField.
+ +
+Section Joins.
+ +
+Variable cT : Field.type.
+Let xT := let: Field.Pack T _ _ := cT in T.
+Let xclass : Field.class_of xT := Field.class cT.
+ +
+Definition type := Eval hnf in DecFieldType cT (DecidableFieldMixin cT).
+Definition finType := @Finite.Pack type (fin_ xclass) xT.
+Definition finZmodType := @Zmodule.Pack type xclass xT.
+Definition finRingType := @Ring.Pack type xclass xT.
+Definition finUnitRingType := @UnitRing.Pack type xclass xT.
+Definition finComRingType := @ComRing.Pack type xclass xT.
+Definition finComUnitRingType := @ComUnitRing.Pack type xclass xT.
+Definition finIdomainType := @IntegralDomain.Pack type xclass xT.
+Definition baseFinGroupType := base_group type finZmodType finZmodType.
+Definition finGroupType := fin_group baseFinGroupType cT.
+ +
+End Joins.
+ +
+Module Exports.
+Coercion type : Field.type >-> GRing.DecidableField.type.
+Canonical type.
+Canonical finType.
+Canonical finZmodType.
+Canonical finRingType.
+Canonical finUnitRingType.
+Canonical finComRingType.
+Canonical finComUnitRingType.
+Canonical finIdomainType.
+Canonical baseFinGroupType.
+Canonical finGroupType.
+End Exports.
+ +
+End DecField.
+ +
+Module Lmodule.
+ +
+Section ClassDef.
+ +
+Variable R : ringType.
+ +
+Record class_of M :=
+  Class { base : GRing.Lmodule.class_of R M; mixin : mixin_of M base }.
+Definition base2 R (c : class_of R) := Zmodule.Class (mixin c).
+ +
+Structure type (phR : phant R) := Pack {sort; _ : class_of sort; _ : Type}.
+Variables (phR : phant R) (cT : type phR).
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Definition pack := gen_pack (Pack phR) Class (@GRing.Lmodule.class R phR).
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+ +
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (fin_ xclass) xT.
+Definition finType := @Finite.Pack cT (fin_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition finZmodType := @Zmodule.Pack cT xclass xT.
+Definition lmodType := @GRing.Lmodule.Pack R phR cT xclass xT.
+Definition join_finType := @Finite.Pack lmodType (fin_ xclass) xT.
+Definition join_finZmodType := @Zmodule.Pack lmodType xclass xT.
+ +
+Definition baseFinGroupType := base_group cT zmodType finType.
+Definition finGroupType := fin_group baseFinGroupType zmodType.
+Definition join_baseFinGroupType := base_group lmodType zmodType finType.
+Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
+ +
+End ClassDef.
+ +
+Module Import Exports.
+Coercion base : class_of >-> GRing.Lmodule.class_of.
+Coercion base2 : class_of >-> Zmodule.class_of.
+Coercion sort : type >-> Sortclass.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion finType : type >-> Finite.type.
+Canonical finType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion finZmodType : type >-> Zmodule.type.
+Canonical finZmodType.
+Coercion lmodType : type >-> GRing.Lmodule.type.
+Canonical lmodType.
+Canonical join_finType.
+Canonical join_finZmodType.
+Notation finLmodType R := (FinRing.Lmodule.type (Phant R)).
+Notation "[ 'finLmodType' R 'of' T ]" := (do_pack (@pack _ (Phant R)) T)
+  (at level 0, format "[ 'finLmodType' R 'of' T ]") : form_scope.
+Canonical baseFinGroupType.
+Canonical finGroupType.
+Canonical join_baseFinGroupType.
+Canonical join_finGroupType.
+End Exports.
+ +
+End Lmodule.
+Import Lmodule.Exports.
+ +
+Module Lalgebra.
+ +
+Section ClassDef.
+ +
+Variable R : ringType.
+ +
+Record class_of M :=
+  Class { base : GRing.Lalgebra.class_of R M; mixin : mixin_of M base }.
+Definition base2 M (c : class_of M) := Ring.Class (mixin c).
+Definition base3 M (c : class_of M) := @Lmodule.Class _ _ (base c) (mixin c).
+ +
+Structure type (phR : phant R) := Pack {sort; _ : class_of sort; _ : Type}.
+Variables (phR : phant R) (cT : type phR).
+Definition pack := gen_pack (Pack phR) Class (@GRing.Lalgebra.class R phR).
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+ +
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (fin_ xclass) xT.
+Definition finType := @Finite.Pack cT (fin_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition finZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition finRingType := @Ring.Pack cT xclass xT.
+Definition lmodType := @GRing.Lmodule.Pack R phR cT xclass xT.
+Definition finLmodType := @Lmodule.Pack R phR cT xclass xT.
+Definition lalgType := @GRing.Lalgebra.Pack R phR cT xclass xT.
+ +
+Definition join_finType := @Finite.Pack lalgType (fin_ xclass) xT.
+Definition join_finZmodType := @Zmodule.Pack lalgType xclass xT.
+Definition join_finLmodType := @Lmodule.Pack R phR lalgType xclass xT.
+Definition join_finRingType := @Ring.Pack lalgType xclass xT.
+Definition rjoin_finLmodType := @Lmodule.Pack R phR ringType xclass xT.
+Definition ljoin_finRingType := @Ring.Pack lmodType xclass xT.
+Definition fljoin_finRingType := @Ring.Pack finLmodType xclass xT.
+ +
+Definition baseFinGroupType := base_group cT zmodType finType.
+Definition finGroupType := fin_group baseFinGroupType zmodType.
+Definition join_baseFinGroupType := base_group lalgType zmodType finType.
+Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
+ +
+End ClassDef.
+ +
+Module Exports.
+Coercion base : class_of >-> GRing.Lalgebra.class_of.
+Coercion base2 : class_of >-> Ring.class_of.
+Coercion base3 : class_of >-> Lmodule.class_of.
+Coercion sort : type >-> Sortclass.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion finType : type >-> Finite.type.
+Canonical finType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion finZmodType : type >-> Zmodule.type.
+Canonical finZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion finRingType : type >-> Ring.type.
+Canonical finRingType.
+Coercion lmodType : type >-> GRing.Lmodule.type.
+Canonical lmodType.
+Coercion finLmodType : type >-> Lmodule.type.
+Canonical finLmodType.
+Coercion lalgType : type >-> GRing.Lalgebra.type.
+Canonical lalgType.
+Canonical join_finType.
+Canonical join_finZmodType.
+Canonical join_finLmodType.
+Canonical join_finRingType.
+Canonical rjoin_finLmodType.
+Canonical ljoin_finRingType.
+Canonical fljoin_finRingType.
+Notation finLalgType R := (FinRing.Lalgebra.type (Phant R)).
+Notation "[ 'finLalgType' R 'of' T ]" := (do_pack (@pack _ (Phant R)) T)
+  (at level 0, format "[ 'finLalgType' R 'of' T ]") : form_scope.
+Canonical baseFinGroupType.
+Canonical finGroupType.
+Canonical join_baseFinGroupType.
+Canonical join_finGroupType.
+End Exports.
+ +
+End Lalgebra.
+Import Lalgebra.Exports.
+ +
+Module Algebra.
+ +
+Section ClassDef.
+ +
+Variable R : ringType.
+ +
+Record class_of M :=
+  Class { base : GRing.Algebra.class_of R M; mixin : mixin_of M base }.
+Definition base2 M (c : class_of M) := Lalgebra.Class (mixin c).
+ +
+Structure type (phR : phant R) := Pack {sort; _ : class_of sort; _ : Type}.
+Variables (phR : phant R) (cT : type phR).
+Definition pack := gen_pack (Pack phR) Class (@GRing.Algebra.class R phR).
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+ +
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (fin_ xclass) xT.
+Definition finType := @Finite.Pack cT (fin_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition finZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition finRingType := @Ring.Pack cT xclass xT.
+Definition lmodType := @GRing.Lmodule.Pack R phR cT xclass xT.
+Definition finLmodType := @Lmodule.Pack R phR cT xclass xT.
+Definition lalgType := @GRing.Lalgebra.Pack R phR cT xclass xT.
+Definition finLalgType := @Lalgebra.Pack R phR cT xclass xT.
+Definition algType := @GRing.Algebra.Pack R phR cT xclass xT.
+ +
+Definition join_finType := @Finite.Pack algType (fin_ xclass) xT.
+Definition join_finZmodType := @Zmodule.Pack algType xclass xT.
+Definition join_finRingType := @Ring.Pack algType xclass xT.
+Definition join_finLmodType := @Lmodule.Pack R phR algType xclass xT.
+Definition join_finLalgType := @Lalgebra.Pack R phR algType xclass xT.
+ +
+Definition baseFinGroupType := base_group cT zmodType finType.
+Definition finGroupType := fin_group baseFinGroupType zmodType.
+Definition join_baseFinGroupType := base_group algType zmodType finType.
+Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
+ +
+End ClassDef.
+ +
+Module Exports.
+Coercion base : class_of >-> GRing.Algebra.class_of.
+Coercion base2 : class_of >-> Lalgebra.class_of.
+Coercion sort : type >-> Sortclass.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion finType : type >-> Finite.type.
+Canonical finType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion finZmodType : type >-> Zmodule.type.
+Canonical finZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion finRingType : type >-> Ring.type.
+Canonical finRingType.
+Coercion lmodType : type >-> GRing.Lmodule.type.
+Canonical lmodType.
+Coercion finLmodType : type >-> Lmodule.type.
+Canonical finLmodType.
+Coercion lalgType : type >-> GRing.Lalgebra.type.
+Canonical lalgType.
+Coercion finLalgType : type >-> Lalgebra.type.
+Canonical finLalgType.
+Coercion algType : type >-> GRing.Algebra.type.
+Canonical algType.
+Canonical join_finType.
+Canonical join_finZmodType.
+Canonical join_finLmodType.
+Canonical join_finRingType.
+Canonical join_finLalgType.
+Notation finAlgType R := (type (Phant R)).
+Notation "[ 'finAlgType' R 'of' T ]" := (do_pack (@pack _ (Phant R)) T)
+  (at level 0, format "[ 'finAlgType' R 'of' T ]") : form_scope.
+Canonical baseFinGroupType.
+Canonical finGroupType.
+Canonical join_baseFinGroupType.
+Canonical join_finGroupType.
+End Exports.
+ +
+End Algebra.
+Import Algebra.Exports.
+ +
+Module UnitAlgebra.
+ +
+Section ClassDef.
+ +
+Variable R : unitRingType.
+ +
+Record class_of M :=
+  Class { base : GRing.UnitAlgebra.class_of R M; mixin : mixin_of M base }.
+Definition base2 M (c : class_of M) := Algebra.Class (mixin c).
+Definition base3 M (c : class_of M) := @UnitRing.Class _ (base c) (mixin c).
+ +
+ +
+Structure type (phR : phant R) := Pack {sort; _ : class_of sort; _ : Type}.
+Variables (phR : phant R) (cT : type phR).
+Definition pack := gen_pack (Pack phR) Class (@GRing.UnitAlgebra.class R phR).
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+ +
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (fin_ xclass) xT.
+Definition finType := @Finite.Pack cT (fin_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition finZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition finRingType := @Ring.Pack cT xclass xT.
+Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
+Definition finUnitRingType := @UnitRing.Pack cT xclass xT.
+Definition lmodType := @GRing.Lmodule.Pack R phR cT xclass xT.
+Definition finLmodType := @Lmodule.Pack R phR cT xclass xT.
+Definition lalgType := @GRing.Lalgebra.Pack R phR cT xclass xT.
+Definition finLalgType := @Lalgebra.Pack R phR cT xclass xT.
+Definition algType := @GRing.Algebra.Pack R phR cT xclass xT.
+Definition finAlgType := @Algebra.Pack R phR cT xclass xT.
+Definition unitAlgType := @GRing.UnitAlgebra.Pack R phR cT xclass xT.
+ +
+Definition join_finType := @Finite.Pack unitAlgType (fin_ xclass) xT.
+Definition join_finZmodType := @Zmodule.Pack unitAlgType xclass xT.
+Definition join_finRingType := @Ring.Pack unitAlgType xclass xT.
+Definition join_finUnitRingType := @UnitRing.Pack unitAlgType xclass xT.
+Definition join_finLmodType := @Lmodule.Pack R phR unitAlgType xclass xT.
+Definition join_finLalgType := @Lalgebra.Pack R phR unitAlgType xclass xT.
+Definition join_finAlgType := @Algebra.Pack R phR unitAlgType xclass xT.
+Definition ljoin_finUnitRingType := @UnitRing.Pack lmodType xclass xT.
+Definition fljoin_finUnitRingType := @UnitRing.Pack finLmodType xclass xT.
+Definition njoin_finUnitRingType := @UnitRing.Pack lalgType xclass xT.
+Definition fnjoin_finUnitRingType := @UnitRing.Pack finLalgType xclass xT.
+Definition ajoin_finUnitRingType := @UnitRing.Pack algType xclass xT.
+Definition fajoin_finUnitRingType := @UnitRing.Pack finAlgType xclass xT.
+Definition ujoin_finLmodType := @Lmodule.Pack R phR unitRingType xclass xT.
+Definition ujoin_finLalgType := @Lalgebra.Pack R phR unitRingType xclass xT.
+Definition ujoin_finAlgType := @Algebra.Pack R phR unitRingType xclass xT.
+ +
+Definition baseFinGroupType := base_group cT zmodType finType.
+Definition finGroupType := fin_group baseFinGroupType zmodType.
+Definition join_baseFinGroupType := base_group unitAlgType zmodType finType.
+Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
+ +
+End ClassDef.
+ +
+Module Exports.
+Coercion base : class_of >-> GRing.UnitAlgebra.class_of.
+Coercion base2 : class_of >-> Algebra.class_of.
+Coercion base3 : class_of >-> UnitRing.class_of.
+Coercion sort : type >-> Sortclass.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion finType : type >-> Finite.type.
+Canonical finType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion finZmodType : type >-> Zmodule.type.
+Canonical finZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion finRingType : type >-> Ring.type.
+Canonical finRingType.
+Coercion unitRingType : type >-> GRing.UnitRing.type.
+Canonical unitRingType.
+Coercion finUnitRingType : type >-> UnitRing.type.
+Canonical finUnitRingType.
+Coercion lmodType : type >-> GRing.Lmodule.type.
+Canonical lmodType.
+Coercion finLmodType : type >-> Lmodule.type.
+Canonical finLmodType.
+Coercion lalgType : type >-> GRing.Lalgebra.type.
+Canonical lalgType.
+Coercion finLalgType : type >-> Lalgebra.type.
+Canonical finLalgType.
+Coercion algType : type >-> GRing.Algebra.type.
+Canonical algType.
+Coercion finAlgType : type >-> Algebra.type.
+Canonical finAlgType.
+Coercion unitAlgType : type >-> GRing.UnitAlgebra.type.
+Canonical unitAlgType.
+Canonical join_finType.
+Canonical join_finZmodType.
+Canonical join_finLmodType.
+Canonical join_finRingType.
+Canonical join_finLalgType.
+Canonical join_finAlgType.
+Canonical ljoin_finUnitRingType.
+Canonical fljoin_finUnitRingType.
+Canonical njoin_finUnitRingType.
+Canonical fnjoin_finUnitRingType.
+Canonical ajoin_finUnitRingType.
+Canonical fajoin_finUnitRingType.
+Canonical ujoin_finLmodType.
+Canonical ujoin_finLalgType.
+Canonical ujoin_finAlgType.
+Notation finUnitAlgType R := (type (Phant R)).
+Notation "[ 'finUnitAlgType' R 'of' T ]" := (do_pack (@pack _ (Phant R)) T)
+  (at level 0, format "[ 'finUnitAlgType' R 'of' T ]") : form_scope.
+Canonical baseFinGroupType.
+Canonical finGroupType.
+Canonical join_baseFinGroupType.
+Canonical join_finGroupType.
+End Exports.
+ +
+End UnitAlgebra.
+Import UnitAlgebra.Exports.
+ +
+Module Theory.
+ +
+Definition zmod1gE := zmod1gE.
+Definition zmodVgE := zmodVgE.
+Definition zmodMgE := zmodMgE.
+Definition zmodXgE := zmodXgE.
+Definition zmod_mulgC := zmod_mulgC.
+Definition zmod_abelian := zmod_abelian.
+Definition val_unit1 := val_unit1.
+Definition val_unitM := val_unitM.
+Definition val_unitX := val_unitX.
+Definition val_unitV := val_unitV.
+Definition unit_actE := unit_actE.
+ +
+End Theory.
+ +
+End FinRing.
+ +
+Import FinRing.
+Export Zmodule.Exports Ring.Exports ComRing.Exports.
+Export UnitRing.Exports UnitsGroupExports ComUnitRing.Exports.
+Export IntegralDomain.Exports Field.Exports DecField.Exports.
+Export Lmodule.Exports Lalgebra.Exports Algebra.Exports UnitAlgebra.Exports.
+ +
+Notation "{ 'unit' R }" := (unit_of (Phant R))
+  (at level 0, format "{ 'unit' R }") : type_scope.
+Notation "''U'" := (unit_action _) (at level 8) : action_scope.
+Notation "''U'" := (unit_groupAction _) (at level 8) : groupAction_scope.
+ +
+
+
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3