// See LICENSE for license details. package chiselTests.util.random import chisel3._ import chisel3.util.{Counter, Enum} import chisel3.util.random._ import chisel3.testers.BasicTester import chiselTests.{ChiselFlatSpec, LFSRDistribution, LFSRMaxPeriod} import math.pow class FooLFSR(val reduction: LFSRReduce, seed: Option[BigInt]) extends PRNG(4, seed) with LFSR { def delta(s: Seq[Bool]): Seq[Bool] = s } /** This tests that after reset an LFSR is not locked up. This manually sets the seed of the LFSR at run-time to the * value that would cause it to lock up. It then asserts reset. The next cycle it checks that the value is NOT the * locked up value. * @param gen an LFSR to test * @param lockUpValue the value that would lock up the LFSR */ class LFSRResetTester(gen: => LFSR, lockUpValue: BigInt) extends BasicTester { val lfsr = Module(gen) lfsr.io.seed.valid := false.B lfsr.io.seed.bits := DontCare lfsr.io.increment := true.B val (count, done) = Counter(true.B, 5) lfsr.io.seed.valid := count === 1.U lfsr.io.seed.bits := lockUpValue.U(lfsr.width.W).asBools lfsr.io.increment := true.B when (count === 2.U) { assert(lfsr.io.out.asUInt === lockUpValue.U, "LFSR is NOT locked up, but should be!") } lfsr.reset := count === 3.U when (count === 4.U) { assert(lfsr.io.out.asUInt =/= lockUpValue.U, "LFSR is locked up, but should not be after reset!") } when (done) { stop() } } class LFSRSpec extends ChiselFlatSpec { def periodCheck(gen: (Int, Set[Int], LFSRReduce) => PRNG, reduction: LFSRReduce, range: Range): Unit = { it should s"have a maximal period over a range of widths (${range.head} to ${range.last}) using ${reduction.getClass}" in { range .foreach{ width => LFSR.tapsMaxPeriod(width).foreach{ taps => info(s"""width $width okay using taps: ${taps.mkString(", ")}""") assertTesterPasses(new LFSRMaxPeriod(PRNG(gen(width, taps, reduction)))) } } } } behavior of "LFSR" it should "throw an exception if initialized to a seed of zero for XOR configuration" in { { the [IllegalArgumentException] thrownBy elaborate(new FooLFSR(XOR, Some(0))) } .getMessage should include ("Seed cannot be zero") } it should "throw an exception if initialized to a seed of all ones for XNOR configuration" in { { the [IllegalArgumentException] thrownBy elaborate(new FooLFSR(XNOR, Some(15))) } .getMessage should include ("Seed cannot be all ones") } it should "reset correctly without a seed for XOR configuration" in { assertTesterPasses(new LFSRResetTester(new FooLFSR(XOR, None), 0)) } it should "reset correctly without a seed for XNOR configuration" in { assertTesterPasses(new LFSRResetTester(new FooLFSR(XNOR, None), 15)) } behavior of "MaximalPeriodGaloisLFSR" it should "throw an exception if no LFSR taps are known" in { { the [IllegalArgumentException] thrownBy elaborate(new MaxPeriodGaloisLFSR(787)) } .getMessage should include ("No max period LFSR taps stored for requested width") } periodCheck((w: Int, t: Set[Int], r: LFSRReduce) => new GaloisLFSR(w, t, reduction=r), XOR, 2 to 16) periodCheck((w: Int, t: Set[Int], r: LFSRReduce) => new GaloisLFSR(w, t, reduction=r), XNOR, 2 to 16) ignore should "have a sane distribution for larger widths" in { ((17 to 32) ++ Seq(64, 128, 256, 512, 1024, 2048, 4096)) .foreach{ width => info(s"width $width okay!") assertTesterPasses(new LFSRDistribution(LFSR(width), math.pow(2, 22).toInt)) } } behavior of "MaximalPeriodFibonacciLFSR" periodCheck((w: Int, t: Set[Int], r: LFSRReduce) => new FibonacciLFSR(w, t, reduction=r), XOR, 2 to 16) periodCheck((w: Int, t: Set[Int], r: LFSRReduce) => new FibonacciLFSR(w, t, reduction=r), XNOR, 2 to 16) behavior of "LFSR maximal period taps" it should "contain all the expected widths" in { ((2 to 786) ++ Seq(1024, 2048, 4096)).foreach(LFSR.tapsMaxPeriod.keys should contain (_)) } }