// SPDX-License-Identifier: Apache-2.0 package chiselTests.util.random import chisel3._ import chisel3.stage.ChiselStage import chisel3.util.{Cat, Counter, Enum} import chisel3.util.random._ import chisel3.testers.{BasicTester, TesterDriver} import chiselTests.{ChiselFlatSpec, Utils} import math.pow class FooLFSR(val reduction: LFSRReduce, seed: Option[BigInt]) extends PRNG(4, seed) with LFSR { def delta(s: Seq[Bool]): Seq[Bool] = s } class LFSRMaxPeriod(gen: => UInt) extends BasicTester { val rv = gen val started = RegNext(true.B, false.B) val seed = withReset(!started) { RegInit(rv) } val (_, wrap) = Counter(started, math.pow(2.0, rv.getWidth).toInt - 1) when(rv === seed && started) { chisel3.assert(wrap) stop() } val last = RegNext(rv) chisel3.assert(rv =/= last, "LFSR last value (0b%b) was equal to current value (0b%b)", rv, last) } /** * This test creates two 4 sided dice. * Each cycle it adds them together and adds a count to the bin corresponding to that value * The asserts check that the bins show the correct distribution. */ class LFSRDistribution(gen: => UInt, cycles: Int = 10000) extends BasicTester { val rv = gen val bins = Reg(Vec(8, UInt(32.W))) // Use tap points on each LFSR so values are more independent val die0 = Cat(Seq.tabulate(2) { i => rv(i) }) val die1 = Cat(Seq.tabulate(2) { i => rv(i + 2) }) val (trial, done) = Counter(true.B, cycles) val rollValue = die0 +& die1 // Note +& is critical because sum will need an extra bit. bins(rollValue) := bins(rollValue) + 1.U when(done) { printf(p"bins: $bins\n") // Note using the printable interpolator p"" to print out a Vec // test that the distribution feels right. assert(bins(1) > bins(0)) assert(bins(2) > bins(1)) assert(bins(3) > bins(2)) assert(bins(4) < bins(3)) assert(bins(5) < bins(4)) assert(bins(6) < bins(5)) assert(bins(7) === 0.U) stop() } } /** This tests that after reset an LFSR is not locked up. This manually sets the seed of the LFSR at run-time to the * value that would cause it to lock up. It then asserts reset. The next cycle it checks that the value is NOT the * locked up value. * @param gen an LFSR to test * @param lockUpValue the value that would lock up the LFSR */ class LFSRResetTester(gen: => LFSR, lockUpValue: BigInt) extends BasicTester { val lfsr = Module(gen) lfsr.io.seed.valid := false.B lfsr.io.seed.bits := DontCare lfsr.io.increment := true.B val (count, done) = Counter(true.B, 5) lfsr.io.seed.valid := count === 1.U lfsr.io.seed.bits := lockUpValue.U(lfsr.width.W).asBools lfsr.io.increment := true.B when(count === 2.U) { assert(lfsr.io.out.asUInt === lockUpValue.U, "LFSR is NOT locked up, but should be!") } lfsr.reset := count === 3.U when(count === 4.U) { assert(lfsr.io.out.asUInt =/= lockUpValue.U, "LFSR is locked up, but should not be after reset!") } when(done) { stop() } } class LFSRSpec extends ChiselFlatSpec with Utils { def periodCheck(gen: (Int, Set[Int], LFSRReduce) => PRNG, reduction: LFSRReduce, range: Range): Unit = { val testName = s"have a maximal period over a range of widths (${range.head} to ${range.last})" + s" using ${reduction.getClass}" it should testName in { range.foreach { width => LFSR.tapsMaxPeriod(width).foreach { taps => info(s"""width $width okay using taps: ${taps.mkString(", ")}""") assertTesterPasses( new LFSRMaxPeriod(PRNG(gen(width, taps, reduction))), annotations = TesterDriver.verilatorOnly ) } } } } behavior.of("LFSR") it should "throw an exception if initialized to a seed of zero for XOR configuration" in { { the[IllegalArgumentException] thrownBy extractCause[IllegalArgumentException] { ChiselStage.elaborate(new FooLFSR(XOR, Some(0))) } }.getMessage should include("Seed cannot be zero") } it should "throw an exception if initialized to a seed of all ones for XNOR configuration" in { { the[IllegalArgumentException] thrownBy extractCause[IllegalArgumentException] { ChiselStage.elaborate(new FooLFSR(XNOR, Some(15))) } }.getMessage should include("Seed cannot be all ones") } it should "reset correctly without a seed for XOR configuration" in { assertTesterPasses(new LFSRResetTester(new FooLFSR(XOR, None), 0)) } it should "reset correctly without a seed for XNOR configuration" in { assertTesterPasses(new LFSRResetTester(new FooLFSR(XNOR, None), 15)) } behavior.of("MaximalPeriodGaloisLFSR") it should "throw an exception if no LFSR taps are known" in { { the[IllegalArgumentException] thrownBy extractCause[IllegalArgumentException] { ChiselStage.elaborate(new MaxPeriodGaloisLFSR(787)) } }.getMessage should include("No max period LFSR taps stored for requested width") } periodCheck((w: Int, t: Set[Int], r: LFSRReduce) => new GaloisLFSR(w, t, reduction = r), XOR, 2 to 16) periodCheck((w: Int, t: Set[Int], r: LFSRReduce) => new GaloisLFSR(w, t, reduction = r), XNOR, 2 to 16) ignore should "have a sane distribution for larger widths" in { ((17 to 32) ++ Seq(64, 128, 256, 512, 1024, 2048, 4096)).foreach { width => info(s"width $width okay!") assertTesterPasses(new LFSRDistribution(LFSR(width), math.pow(2, 22).toInt)) } } behavior.of("MaximalPeriodFibonacciLFSR") periodCheck((w: Int, t: Set[Int], r: LFSRReduce) => new FibonacciLFSR(w, t, reduction = r), XOR, 2 to 16) periodCheck((w: Int, t: Set[Int], r: LFSRReduce) => new FibonacciLFSR(w, t, reduction = r), XNOR, 2 to 16) behavior.of("LFSR maximal period taps") it should "contain all the expected widths" in { ((2 to 786) ++ Seq(1024, 2048, 4096)).foreach(LFSR.tapsMaxPeriod.keys should contain(_)) } }