// SPDX-License-Identifier: Apache-2.0 package chisel3.util.experimental.decode import chisel3.util.BitPat import scala.annotation.tailrec import scala.math.Ordered.orderingToOrdered import scala.language.implicitConversions /** A [[Minimizer]] implementation to use Quine-Mccluskey algorithm to minimize the [[TruthTable]]. * * This algorithm can always find the best solution, but is a NP-Complete algorithm, * which means, for large-scale [[TruthTable]] minimization task, it will be really slow, * and might run out of memory of JVM stack. * * In this situation, users should consider switch to [[EspressoMinimizer]], * which uses heuristic algorithm providing a sub-optimized result. */ object QMCMinimizer extends Minimizer { private implicit def toImplicant(x: BitPat): Implicant = new Implicant(x) private class Implicant(val bp: BitPat) { var isPrime: Boolean = true def width = bp.getWidth override def equals(that: Any): Boolean = that match { case x: Implicant => bp.value == x.bp.value && bp.mask == x.bp.mask case _ => false } override def hashCode = bp.value.toInt /** Check whether two implicants have the same value on all of the cared bits (intersection). * * {{{ * value ^^ x.value // bits that are different * (bits that are different) & x.mask // bits that are different and `this` care * (bits that are different and `this` care) & y.mask // bits that are different and `both` care * (bits that are different and both care) == 0 // no (bits that are different and we both care) exists * no (bits that are different and we both care) exists // all cared bits are the same, two terms intersect * }}} * * @param y Implicant to be checked with * @return Whether two implicants intersect */ def intersects(y: Implicant): Boolean = ((bp.value ^ y.bp.value) & bp.mask & y.bp.mask) == 0 /** Check whether two implicants are similar. * Two implicants are "similar" when they satisfy all the following rules: * 1. have the same mask ('?'s are at the same positions) * 1. values only differ by one bit * 1. the bit at the differed position of this term is '1' (that of the other term is '0') * * @example this = 11?0, x = 10?0 -> similar * @example this = 11??, x = 10?0 -> not similar, violated rule 1 * @example this = 11?1, x = 10?0 -> not similar, violated rule 2 * @example this = 10?0, x = 11?0 -> not similar, violated rule 3 * @param y Implicant to be checked with * @return Whether this term is similar to the other */ def similar(y: Implicant): Boolean = { val diff = bp.value - y.bp.value bp.mask == y.bp.mask && bp.value > y.bp.value && (diff & diff - 1) == 0 } /** Merge two similar implicants * Rule of merging: '0' and '1' merge to '?' * * @param y Term to be merged with * @return A new term representing the merge result */ def merge(y: Implicant): Implicant = { require(similar(y), s"merge is only reasonable when $this is similar to $y") // if two term can be merged, then they both are not prime implicants. isPrime = false y.isPrime = false val bit = bp.value - y.bp.value new BitPat(bp.value &~ bit, bp.mask &~ bit, width) } /** Check all bits in `x` cover the correspond position in `y`. * * Rule to define coverage relationship among `0`, `1` and `?`: * 1. '?' covers '0' and '1', '0' covers '0', '1' covers '1' * 1. '1' doesn't cover '?', '1' doesn't cover '0' * 1. '0' doesn't cover '?', '0' doesn't cover '1' * * For all bits that `x` don't care, `y` can be `0`, `1`, `?` * For all bits that `x` care, `y` must be the same value and not masked. * {{{ * (~x.mask & -1) | ((x.mask) & ((x.value xnor y.value) & y.mask)) = -1 * -> ~x.mask | ((x.mask) & ((x.value xnor y.value) & y.mask)) = -1 * -> ~x.mask | ((x.value xnor y.value) & y.mask) = -1 * -> x.mask & ~((x.value xnor y.value) & y.mask) = 0 * -> x.mask & (~(x.value xnor y.value) | ~y.mask) = 0 * -> x.mask & ((x.value ^ y.value) | ~y.mask) = 0 * -> ((x.value ^ y.value) & x.mask | ~y.mask & x.mask) = 0 * }}} * * @param y to check is covered by `x` or not. * @return Whether `x` covers `y` */ def covers(y: Implicant): Boolean = ((bp.value ^ y.bp.value) & bp.mask | ~y.bp.mask & bp.mask) == 0 override def toString = (if (!isPrime) "Non" else "") + "Prime" + bp.toString.replace("BitPat", "Implicant") } /** * If two terms have different value, then their order is determined by the value, or by the mask. */ private implicit def ordering: Ordering[Implicant] = new Ordering[Implicant] { override def compare(x: Implicant, y: Implicant): Int = if (x.bp.value < y.bp.value || x.bp.value == y.bp.value && x.bp.mask > y.bp.mask) -1 else 1 } /** Calculate essential prime implicants based on previously calculated prime implicants and all implicants. * * @param primes Prime implicants * @param minterms All implicants * @return (a, b, c) * a: essential prime implicants * b: nonessential prime implicants * c: implicants that are not cover by any of the essential prime implicants */ private def getEssentialPrimeImplicants( primes: Seq[Implicant], minterms: Seq[Implicant] ): (Seq[Implicant], Seq[Implicant], Seq[Implicant]) = { // primeCovers(i): implicants that `prime(i)` covers val primeCovers = primes.map(p => minterms.filter(p.covers)) // eliminate prime implicants that can be covered by other prime implicants for (((icover, pi), i) <- (primeCovers.zip(primes)).zipWithIndex) { for (((jcover, pj), _) <- (primeCovers.zip(primes)).zipWithIndex.drop(i + 1)) { // we prefer prime implicants with wider implicants coverage if (icover.size > jcover.size && jcover.forall(pi.covers)) { // calculate essential prime implicants with `pj` eliminated from prime implicants table return getEssentialPrimeImplicants(primes.filter(_ != pj), minterms) } } } // implicants that only one prime implicant covers val essentiallyCovered = minterms.filter(t => primes.count(_.covers(t)) == 1) // essential prime implicants, prime implicants that covers only one implicant val essential = primes.filter(p => essentiallyCovered.exists(p.covers)) // {nonessential} = {prime implicants} - {essential prime implicants} val nonessential = primes.filterNot(essential contains _) // implicants that no essential prime implicants covers val uncovered = minterms.filterNot(t => essential.exists(_.covers(t))) if (essential.isEmpty || uncovered.isEmpty) (essential, nonessential, uncovered) else { // now there are implicants (`uncovered`) that are covered by multiple nonessential prime implicants (`nonessential`) // need to reduce prime implicants val (a, b, c) = getEssentialPrimeImplicants(nonessential, uncovered) (essential ++ a, b, c) } } /** Use [[https://en.wikipedia.org/wiki/Petrick%27s_method]] to select a [[Seq]] of nonessential prime implicants * that covers all implicants that are not covered by essential prime implicants. * * @param implicants Nonessential prime implicants * @param minterms Implicants that are not covered by essential prime implicants * @return Selected nonessential prime implicants */ private def getCover(implicants: Seq[Implicant], minterms: Seq[Implicant]): Seq[Implicant] = { /** Calculate the implementation cost (using comparators) of a list of implicants, more don't cares is cheaper * * @param cover Implicant list * @return How many comparators need to implement this list of implicants */ def getCost(cover: Seq[Implicant]): Int = cover.map(_.bp.mask.bitCount).sum /** Determine if one combination of prime implicants is cheaper when implementing as comparators. * Shorter term list is cheaper, term list with more don't cares is cheaper (less comparators) * * @param a Operand a * @param b Operand b * @return `a` < `b` */ def cheaper(a: Seq[Implicant], b: Seq[Implicant]): Boolean = { val ca = getCost(a) val cb = getCost(b) /** If `a` < `b` * * Like comparing the dictionary order of two strings. * Define `a` < `b` if both `a` and `b` are empty. * * @param a Operand a * @param b Operand b * @return `a` < `b` */ @tailrec def listLess(a: Seq[Implicant], b: Seq[Implicant]): Boolean = b.nonEmpty && (a.isEmpty || a.head < b.head || a.head == b.head && listLess(a.tail, b.tail)) ca < cb || ca == cb && listLess(a.sortWith(_ < _), b.sortWith(_ < _)) } // if there are no implicant that is not covered by essential prime implicants, which means all implicants are // covered by essential prime implicants, there is no need to apply Petrick's method if (minterms.nonEmpty) { // cover(i): nonessential prime implicants that covers `minterms(i)` val cover = minterms.map(m => implicants.filter(_.covers(m))) // all subsets of `cover`, NP algorithm, O(2 ^ len(cover)) val all = cover.tail.foldLeft(cover.head.map(Set(_)))((c0, c1) => c0.flatMap(a => c1.map(a + _))) all.map(_.toList).reduceLeft((a, b) => if (cheaper(a, b)) a else b) } else Seq[Implicant]() } def minimize(table: TruthTable): TruthTable = { require(table.table.nonEmpty, "Truth table must not be empty") // extract decode table to inputs and outputs val (inputs, outputs) = table.table.unzip require( outputs.map(_.getWidth == table.default.getWidth).reduce(_ && _), "All output BitPats and default BitPat must have the same length" ) require( if (inputs.toSeq.length > 1) inputs.tail.map(_.width == inputs.head.width).reduce(_ && _) else true, "All input BitPats must have the same length" ) // make sure no two inputs specified in the truth table intersect for (t <- inputs.tails; if t.nonEmpty) for (u <- t.tail) require(!t.head.intersects(u), "truth table entries " + t.head + " and " + u + " overlap") // number of inputs val n = inputs.head.width // number of outputs val m = outputs.head.getWidth // for all outputs val minimized = (0 until m).flatMap(i => { val outputBp = BitPat("b" + "?" * (m - i - 1) + "1" + "?" * i) // Minterms, implicants that makes the output to be 1 val mint: Seq[Implicant] = table.table.filter { case (_, t) => t.mask.testBit(i) && t.value.testBit(i) }.map(_._1).map(toImplicant) // Maxterms, implicants that makes the output to be 0 val maxt: Seq[Implicant] = table.table.filter { case (_, t) => t.mask.testBit(i) && !t.value.testBit(i) }.map(_._1).map(toImplicant) // Don't cares, implicants that can produce either 0 or 1 as output val dc: Seq[Implicant] = table.table.filter { case (_, t) => !t.mask.testBit(i) }.map(_._1).map(toImplicant) val (implicants, defaultToDc) = table.default match { case x if x.mask.testBit(i) && !x.value.testBit(i) => // default to 0 (mint ++ dc, false) case x if x.mask.testBit(i) && x.value.testBit(i) => // default to 1 (maxt ++ dc, false) case x if !x.mask.testBit(i) => // default to ? (mint, true) } implicants.foreach(_.isPrime = true) val cols = (0 to n).reverse.map(b => implicants.filter(b == _.bp.mask.bitCount)) val mergeTable = cols.map(c => (0 to n).map(b => collection.mutable.Set(c.filter(b == _.bp.value.bitCount): _*))) // O(n ^ 3) for (i <- 0 to n) { for (j <- 0 until n - i) { mergeTable(i)(j).foreach(a => mergeTable(i + 1)(j) ++= mergeTable(i)(j + 1).filter(_.similar(a)).map(_.merge(a)) ) } if (defaultToDc) { for (j <- 0 until n - i) { for (a <- mergeTable(i)(j).filter(_.isPrime)) { if (a.bp.mask.testBit(i) && !a.bp.value.testBit(i)) { // this bit is `0` val t = new BitPat(a.bp.value.setBit(i), a.bp.mask, a.width) if (!maxt.exists(_.intersects(t))) mergeTable(i + 1)(j) += t.merge(a) } } for (a <- mergeTable(i)(j + 1).filter(_.isPrime)) { if (a.bp.mask.testBit(i) && a.bp.value.testBit(i)) { // this bit is `1` val t = new BitPat(a.bp.value.clearBit(i), a.bp.mask, a.width) if (!maxt.exists(_.intersects(t))) mergeTable(i + 1)(j) += a.merge(t) } } } } } val primeImplicants = mergeTable.flatten.flatten.filter(_.isPrime).sortWith(_ < _) // O(len(primeImplicants) ^ 4) val (essentialPrimeImplicants, nonessentialPrimeImplicants, uncoveredImplicants) = getEssentialPrimeImplicants(primeImplicants, implicants) (essentialPrimeImplicants ++ getCover(nonessentialPrimeImplicants, uncoveredImplicants)).map(a => (a.bp, outputBp) ) }) // special case for 0 and DontCare, if output is not couple to input if (minimized.isEmpty) table.copy( Seq( ( BitPat(s"b${"?" * table.inputWidth}"), BitPat(s"b${"0" * table.outputWidth}") ) ) ) else minimized.tail.foldLeft(table.copy(table = Seq(minimized.head))) { case (tb, t) => if (tb.table.exists(x => x._1 == t._1)) { tb.copy(table = tb.table.map { case (k, v) => if (k == t._1) { def ones(bitPat: BitPat) = bitPat.rawString.zipWithIndex.collect { case ('1', x) => x } ( k, BitPat( "b" + (0 until v.getWidth) .map(i => if ((ones(v) ++ ones(t._2)).contains(i)) "1" else "?") .mkString ) ) } else (k, v) }) } else { tb.copy(table = tb.table :+ t) } } } }