// See LICENSE for license details. package Chisel import internal._ import internal.Builder.pushOp import internal.firrtl._ import firrtl.PrimOp._ /** Element is a leaf data type: it cannot contain other Data objects. Example * uses are for representing primitive data types, like integers and bits. */ abstract class Element(dirArg: Direction, val width: Width) extends Data(dirArg) /** A data type for values represented by a single bitvector. Provides basic * bitwise operations. */ sealed abstract class Bits(dirArg: Direction, width: Width, override val litArg: Option[LitArg]) extends Element(dirArg, width) { // TODO: perhaps make this concrete? // Arguments for: self-checking code (can't do arithmetic on bits) // Arguments against: generates down to a FIRRTL UInt anyways private[Chisel] def fromInt(x: BigInt): this.type private[Chisel] def flatten: IndexedSeq[Bits] = IndexedSeq(this) def cloneType: this.type = cloneTypeWidth(width) override def <> (that: Data): Unit = this := that def tail(n: Int): UInt = { val w = width match { case KnownWidth(x) => require(x >= n, s"Can't tail($n) for width $x < $n") Width(x - n) case UnknownWidth() => Width() } binop(UInt(width = w), TailOp, n) } def head(n: Int): UInt = { width match { case KnownWidth(x) => require(x >= n, s"Can't head($n) for width $x < $n") case UnknownWidth() => } binop(UInt(width = n), HeadOp, n) } /** Returns the specified bit on this wire as a [[Bool]], statically * addressed. */ final def apply(x: BigInt): Bool = { if (x < 0) { Builder.error(s"Negative bit indices are illegal (got $x)") } if (isLit()) { Bool(((litValue() >> x.toInt) & 1) == 1) } else { pushOp(DefPrim(Bool(), BitsExtractOp, this.ref, ILit(x), ILit(x))) } } /** Returns the specified bit on this wire as a [[Bool]], statically * addressed. * * @note convenience method allowing direct use of Ints without implicits */ final def apply(x: Int): Bool = apply(BigInt(x)) /** Returns the specified bit on this wire as a [[Bool]], dynamically * addressed. */ final def apply(x: UInt): Bool = (this >> x)(0) /** Returns a subset of bits on this wire from `hi` to `lo` (inclusive), * statically addressed. * * @example * {{{ * myBits = 0x5 = 0b101 * myBits(1,0) => 0b01 // extracts the two least significant bits * }}} */ final def apply(x: Int, y: Int): UInt = { if (x < y || y < 0) { Builder.error(s"Invalid bit range ($x,$y)") } val w = x - y + 1 if (isLit()) { UInt((litValue >> y) & ((BigInt(1) << w) - 1), w) } else { pushOp(DefPrim(UInt(width = w), BitsExtractOp, this.ref, ILit(x), ILit(y))) } } // REVIEW TODO: again, is this necessary? Or just have this and use implicits? final def apply(x: BigInt, y: BigInt): UInt = apply(x.toInt, y.toInt) private[Chisel] def unop[T <: Data](dest: T, op: PrimOp): T = pushOp(DefPrim(dest, op, this.ref)) private[Chisel] def binop[T <: Data](dest: T, op: PrimOp, other: BigInt): T = pushOp(DefPrim(dest, op, this.ref, ILit(other))) private[Chisel] def binop[T <: Data](dest: T, op: PrimOp, other: Bits): T = pushOp(DefPrim(dest, op, this.ref, other.ref)) private[Chisel] def compop(op: PrimOp, other: Bits): Bool = pushOp(DefPrim(Bool(), op, this.ref, other.ref)) private[Chisel] def redop(op: PrimOp): Bool = pushOp(DefPrim(Bool(), op, this.ref)) /** Returns this wire zero padded up to the specified width. * * @note for SInts only, this does sign extension */ def pad (other: Int): this.type = binop(cloneTypeWidth(this.width max Width(other)), PadOp, other) /** Shift left operation */ // REVIEW TODO: redundant // REVIEW TODO: should these return this.type or Bits? def << (other: BigInt): Bits /** Returns this wire statically left shifted by the specified amount, * inserting zeros into the least significant bits. * * The width of the output is `other` larger than the input. */ def << (other: Int): Bits /** Returns this wire dynamically left shifted by the specified amount, * inserting zeros into the least significant bits. * * The width of the output is `pow(2, width(other))` larger than the input. */ def << (other: UInt): Bits /** Shift right operation */ // REVIEW TODO: redundant def >> (other: BigInt): Bits /** Returns this wire statically right shifted by the specified amount, * inserting zeros into the most significant bits. * * The width of the output is the same as the input. */ def >> (other: Int): Bits /** Returns this wire dynamically right shifted by the specified amount, * inserting zeros into the most significant bits. * * The width of the output is the same as the input. */ def >> (other: UInt): Bits /** Returns the contents of this wire as a [[Vec]] of [[Bool]]s. */ def toBools: Vec[Bool] = Vec.tabulate(this.getWidth)(i => this(i)) /** Reinterpret cast to a SInt. * * @note value not guaranteed to be preserved: for example, an UInt of width * 3 and value 7 (0b111) would become a SInt with value -1 */ def asSInt(): SInt /** Reinterpret cast to an UInt. * * @note value not guaranteed to be preserved: for example, a SInt of width * 3 and value -1 (0b111) would become an UInt with value 7 */ def asUInt(): UInt /** Reinterpret cast to Bits. */ def asBits(): Bits = asUInt @deprecated("Use asSInt, which makes the reinterpret cast more explicit", "chisel3") final def toSInt(): SInt = asSInt @deprecated("Use asUInt, which makes the reinterpret cast more explicit", "chisel3") final def toUInt(): UInt = asUInt def toBool(): Bool = width match { case KnownWidth(1) => this(0) case _ => throwException(s"can't covert UInt<$width> to Bool") } /** Returns this wire concatenated with `other`, where this wire forms the * most significant part and `other` forms the least significant part. * * The width of the output is sum of the inputs. */ def ## (other: Bits): UInt = { val w = this.width + other.width pushOp(DefPrim(UInt(w), ConcatOp, this.ref, other.ref)) } @deprecated("Use asBits, which makes the reinterpret cast more explicit and actually returns Bits", "chisel3") override def toBits: UInt = asUInt override def fromBits(n: Bits): this.type = { val res = Wire(this).asInstanceOf[this.type] res := n res } } /** Provides a set of operations to create UInt types and literals. * Identical in functionality to the UInt companion object. */ object Bits extends UIntFactory // REVIEW TODO: Further discussion needed on what Num actually is. /** Abstract trait defining operations available on numeric-like wire data * types. */ abstract trait Num[T <: Data] { // def << (b: T): T // def >> (b: T): T //def unary_-(): T // REVIEW TODO: double check ops conventions against FIRRTL /** Outputs the sum of `this` and `b`. The resulting width is the max of the * operands plus 1 (should not overflow). */ def + (b: T): T /** Outputs the product of `this` and `b`. The resulting width is the sum of * the operands. * * @note can generate a single-cycle multiplier, which can result in * significant cycle time and area costs */ def * (b: T): T /** Outputs the quotient of `this` and `b`. * * TODO: full rules */ def / (b: T): T def % (b: T): T /** Outputs the difference of `this` and `b`. The resulting width is the max * of the operands plus 1 (should not overflow). */ def - (b: T): T /** Outputs true if `this` < `b`. */ def < (b: T): Bool /** Outputs true if `this` <= `b`. */ def <= (b: T): Bool /** Outputs true if `this` > `b`. */ def > (b: T): Bool /** Outputs true if `this` >= `b`. */ def >= (b: T): Bool /** Outputs the minimum of `this` and `b`. The resulting width is the max of * the operands. */ def min(b: T): T = Mux(this < b, this.asInstanceOf[T], b) /** Outputs the maximum of `this` and `b`. The resulting width is the max of * the operands. */ def max(b: T): T = Mux(this < b, b, this.asInstanceOf[T]) } /** A data type for unsigned integers, represented as a binary bitvector. * Defines arithmetic operations between other integer types. */ sealed class UInt private[Chisel] (dir: Direction, width: Width, lit: Option[ULit] = None) extends Bits(dir, width, lit) with Num[UInt] { private[Chisel] override def cloneTypeWidth(w: Width): this.type = new UInt(dir, w).asInstanceOf[this.type] private[Chisel] def toType = s"UInt$width" override private[Chisel] def fromInt(value: BigInt): this.type = UInt(value).asInstanceOf[this.type] override def := (that: Data): Unit = that match { case _: UInt => this connect that case _ => this badConnect that } // TODO: refactor to share documentation with Num or add independent scaladoc def unary_- : UInt = UInt(0) - this def unary_-% : UInt = UInt(0) -% this def +& (other: UInt): UInt = binop(UInt((this.width max other.width) + 1), AddOp, other) def + (other: UInt): UInt = this +% other def +% (other: UInt): UInt = (this +& other) tail 1 def -& (other: UInt): UInt = binop(UInt((this.width max other.width) + 1), SubOp, other) def - (other: UInt): UInt = this -% other def -% (other: UInt): UInt = (this -& other) tail 1 def * (other: UInt): UInt = binop(UInt(this.width + other.width), TimesOp, other) def * (other: SInt): SInt = other * this def / (other: UInt): UInt = binop(UInt(this.width), DivideOp, other) def % (other: UInt): UInt = binop(UInt(this.width), RemOp, other) def & (other: UInt): UInt = binop(UInt(this.width max other.width), BitAndOp, other) def | (other: UInt): UInt = binop(UInt(this.width max other.width), BitOrOp, other) def ^ (other: UInt): UInt = binop(UInt(this.width max other.width), BitXorOp, other) /** Returns this wire bitwise-inverted. */ def unary_~ : UInt = unop(UInt(width = width), BitNotOp) // REVIEW TODO: Can this be defined on Bits? def orR: Bool = this != UInt(0) def andR: Bool = ~this === UInt(0) def xorR: Bool = redop(XorReduceOp) def < (other: UInt): Bool = compop(LessOp, other) def > (other: UInt): Bool = compop(GreaterOp, other) def <= (other: UInt): Bool = compop(LessEqOp, other) def >= (other: UInt): Bool = compop(GreaterEqOp, other) def != (other: UInt): Bool = compop(NotEqualOp, other) def =/= (other: UInt): Bool = compop(NotEqualOp, other) def === (other: UInt): Bool = compop(EqualOp, other) def unary_! : Bool = this === Bits(0) // REVIEW TODO: Can these also not be defined on Bits? def << (other: Int): UInt = binop(UInt(this.width + other), ShiftLeftOp, other) def << (other: BigInt): UInt = this << other.toInt def << (other: UInt): UInt = binop(UInt(this.width.dynamicShiftLeft(other.width)), DynamicShiftLeftOp, other) def >> (other: Int): UInt = binop(UInt(this.width.shiftRight(other)), ShiftRightOp, other) def >> (other: BigInt): UInt = this >> other.toInt def >> (other: UInt): UInt = binop(UInt(this.width), DynamicShiftRightOp, other) def bitSet(off: UInt, dat: Bool): UInt = { val bit = UInt(1, 1) << off Mux(dat, this | bit, ~(~this | bit)) } def === (that: BitPat): Bool = that === this def != (that: BitPat): Bool = that != this def =/= (that: BitPat): Bool = that =/= this /** Returns this UInt as a [[SInt]] with an additional zero in the MSB. */ // TODO: this eventually will be renamed as toSInt, once the existing toSInt // completes its deprecation phase. def zext(): SInt = pushOp(DefPrim(SInt(width + 1), ConvertOp, ref)) /** Returns this UInt as a [[SInt]], without changing width or bit value. The * SInt is not guaranteed to have the same value (for example, if the MSB is * high, it will be interpreted as a negative value). */ def asSInt(): SInt = pushOp(DefPrim(SInt(width), AsSIntOp, ref)) def asUInt(): UInt = this } // This is currently a factory because both Bits and UInt inherit it. private[Chisel] sealed trait UIntFactory { /** Create a UInt type with inferred width. */ def apply(): UInt = apply(NO_DIR, Width()) /** Create a UInt type or port with fixed width. */ def apply(dir: Direction = NO_DIR, width: Int): UInt = apply(dir, Width(width)) /** Create a UInt port with inferred width. */ def apply(dir: Direction): UInt = apply(dir, Width()) /** Create a UInt literal with inferred width. */ def apply(value: BigInt): UInt = apply(value, Width()) /** Create a UInt literal with fixed width. */ def apply(value: BigInt, width: Int): UInt = apply(value, Width(width)) /** Create a UInt literal with inferred width. */ def apply(n: String): UInt = apply(parse(n), parsedWidth(n)) /** Create a UInt literal with fixed width. */ def apply(n: String, width: Int): UInt = apply(parse(n), width) /** Create a UInt type with specified width. */ def apply(width: Width): UInt = apply(NO_DIR, width) /** Create a UInt port with specified width. */ def apply(dir: Direction, width: Width): UInt = new UInt(dir, width) /** Create a UInt literal with specified width. */ def apply(value: BigInt, width: Width): UInt = { val lit = ULit(value, width) new UInt(NO_DIR, lit.width, Some(lit)) } private def parse(n: String) = { val (base, num) = n.splitAt(1) val radix = base match { case "x" | "h" => 16 case "d" => 10 case "o" => 8 case "b" => 2 case _ => Builder.error(s"Invalid base $base"); 2 } BigInt(num.filterNot(_ == '_'), radix) } private def parsedWidth(n: String) = if (n(0) == 'b') { Width(n.length-1) } else if (n(0) == 'h') { Width((n.length-1) * 4) } else { Width() } } object UInt extends UIntFactory sealed class SInt private (dir: Direction, width: Width, lit: Option[SLit] = None) extends Bits(dir, width, lit) with Num[SInt] { private[Chisel] override def cloneTypeWidth(w: Width): this.type = new SInt(dir, w).asInstanceOf[this.type] private[Chisel] def toType = s"SInt$width" override def := (that: Data): Unit = that match { case _: SInt => this connect that case _ => this badConnect that } override private[Chisel] def fromInt(value: BigInt): this.type = SInt(value).asInstanceOf[this.type] def unary_- : SInt = SInt(0) - this def unary_-% : SInt = SInt(0) -% this /** add (width +1) operator */ def +& (other: SInt): SInt = binop(SInt((this.width max other.width) + 1), AddOp, other) /** add (default - no growth) operator */ def + (other: SInt): SInt = this +% other /** add (no growth) operator */ def +% (other: SInt): SInt = (this +& other).tail(1).asSInt /** subtract (width +1) operator */ def -& (other: SInt): SInt = binop(SInt((this.width max other.width) + 1), SubOp, other) /** subtract (default - no growth) operator */ def - (other: SInt): SInt = this -% other /** subtract (no growth) operator */ def -% (other: SInt): SInt = (this -& other).tail(1).asSInt def * (other: SInt): SInt = binop(SInt(this.width + other.width), TimesOp, other) def * (other: UInt): SInt = binop(SInt(this.width + other.width), TimesOp, other) def / (other: SInt): SInt = binop(SInt(this.width), DivideOp, other) def % (other: SInt): SInt = binop(SInt(this.width), RemOp, other) def & (other: SInt): SInt = binop(UInt(this.width max other.width), BitAndOp, other).asSInt def | (other: SInt): SInt = binop(UInt(this.width max other.width), BitOrOp, other).asSInt def ^ (other: SInt): SInt = binop(UInt(this.width max other.width), BitXorOp, other).asSInt /** Returns this wire bitwise-inverted. */ def unary_~ : SInt = unop(UInt(width = width), BitNotOp).asSInt def < (other: SInt): Bool = compop(LessOp, other) def > (other: SInt): Bool = compop(GreaterOp, other) def <= (other: SInt): Bool = compop(LessEqOp, other) def >= (other: SInt): Bool = compop(GreaterEqOp, other) def != (other: SInt): Bool = compop(NotEqualOp, other) def =/= (other: SInt): Bool = compop(NotEqualOp, other) def === (other: SInt): Bool = compop(EqualOp, other) def abs(): UInt = Mux(this < SInt(0), (-this).asUInt, this.asUInt) def << (other: Int): SInt = binop(SInt(this.width + other), ShiftLeftOp, other) def << (other: BigInt): SInt = this << other.toInt def << (other: UInt): SInt = binop(SInt(this.width.dynamicShiftLeft(other.width)), DynamicShiftLeftOp, other) def >> (other: Int): SInt = binop(SInt(this.width.shiftRight(other)), ShiftRightOp, other) def >> (other: BigInt): SInt = this >> other.toInt def >> (other: UInt): SInt = binop(SInt(this.width), DynamicShiftRightOp, other) def asUInt(): UInt = pushOp(DefPrim(UInt(this.width), AsUIntOp, ref)) def asSInt(): SInt = this } object SInt { /** Create an SInt type with inferred width. */ def apply(): SInt = apply(NO_DIR, Width()) /** Create an SInt type or port with fixed width. */ def apply(dir: Direction = NO_DIR, width: Int): SInt = apply(dir, Width(width)) /** Create an SInt port with inferred width. */ def apply(dir: Direction): SInt = apply(dir, Width()) /** Create an SInt literal with inferred width. */ def apply(value: BigInt): SInt = apply(value, Width()) /** Create an SInt literal with fixed width. */ def apply(value: BigInt, width: Int): SInt = apply(value, Width(width)) /** Create an SInt type with specified width. */ def apply(width: Width): SInt = new SInt(NO_DIR, width) /** Create an SInt port with specified width. */ def apply(dir: Direction, width: Width): SInt = new SInt(dir, width) /** Create an SInt literal with specified width. */ def apply(value: BigInt, width: Width): SInt = { val lit = SLit(value, width) new SInt(NO_DIR, lit.width, Some(lit)) } } // REVIEW TODO: Why does this extend UInt and not Bits? Does defining airth // operations on a Bool make sense? /** A data type for booleans, defined as a single bit indicating true or false. */ sealed class Bool(dir: Direction, lit: Option[ULit] = None) extends UInt(dir, Width(1), lit) { private[Chisel] override def cloneTypeWidth(w: Width): this.type = { require(!w.known || w.get == 1) new Bool(dir).asInstanceOf[this.type] } override private[Chisel] def fromInt(value: BigInt): this.type = { require(value == 0 || value == 1) Bool(value == 1).asInstanceOf[this.type] } // REVIEW TODO: Why does this need to exist and have different conventions // than Bits? def & (other: Bool): Bool = binop(Bool(), BitAndOp, other) def | (other: Bool): Bool = binop(Bool(), BitOrOp, other) def ^ (other: Bool): Bool = binop(Bool(), BitXorOp, other) /** Returns this wire bitwise-inverted. */ override def unary_~ : Bool = unop(Bool(), BitNotOp) /** Outputs the logical OR of two Bools. */ def || (that: Bool): Bool = this | that /** Outputs the logical AND of two Bools. */ def && (that: Bool): Bool = this & that } object Bool { /** Creates an empty Bool. */ def apply(dir: Direction = NO_DIR): Bool = new Bool(dir) /** Creates Bool literal. */ def apply(x: Boolean): Bool = new Bool(NO_DIR, Some(ULit(if (x) 1 else 0, Width(1)))) } object Mux { /** Creates a mux, whose output is one of the inputs depending on the * value of the condition. * * @param cond condition determining the input to choose * @param con the value chosen when `cond` is true * @param alt the value chosen when `cond` is false * @example * {{{ * val muxOut = Mux(data_in === UInt(3), UInt(3, 4), UInt(0, 4)) * }}} */ def apply[T <: Data](cond: Bool, con: T, alt: T): T = (con, alt) match { // Handle Mux(cond, UInt, Bool) carefully so that the concrete type is UInt case (c: Bool, a: Bool) => doMux(cond, c, a).asInstanceOf[T] case (c: UInt, a: Bool) => doMux(cond, c, a << 0).asInstanceOf[T] case (c: Bool, a: UInt) => doMux(cond, c << 0, a).asInstanceOf[T] case (c: Bits, a: Bits) => doMux(cond, c, a).asInstanceOf[T] case _ => doAggregateMux(cond, con, alt) } private def doMux[T <: Data](cond: Bool, con: T, alt: T): T = { require(con.getClass == alt.getClass, s"can't Mux between ${con.getClass} and ${alt.getClass}") val d = alt.cloneTypeWidth(con.width max alt.width) pushOp(DefPrim(d, MultiplexOp, cond.ref, con.ref, alt.ref)) } private def doAggregateMux[T <: Data](cond: Bool, con: T, alt: T): T = { require(con.getClass == alt.getClass, s"can't Mux between ${con.getClass} and ${alt.getClass}") for ((c, a) <- con.flatten zip alt.flatten) require(c.width == a.width, "can't Mux between aggregates of different width") doMux(cond, con, alt) } }